# Polynomials over $Q$ solving an embedding problem

Annales de l'institut Fourier (1985)

- Volume: 35, Issue: 2, page 79-82
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topVila, Nuria. "Polynomials over $Q$ solving an embedding problem." Annales de l'institut Fourier 35.2 (1985): 79-82. <http://eudml.org/doc/74678>.

@article{Vila1985,

abstract = {The fields defined by the polynomials constructed in E. Nart and the author in J. Number Theory 16, (1983), 6–13, Th. 2.1, with absolute Galois group the alternating group $A_ n$, can be embedded in any central extension of $A_ n$ if and only if $n\equiv 0 (mod 8)$, or $n\equiv 2 (mod 8)$ and $n$ is a sum of two squares. Consequently, for theses values of $n$, every central extension of $A_ n$ occurs as a Galois group over $\{\bf Q\}$.},

author = {Vila, Nuria},

journal = {Annales de l'institut Fourier},

keywords = {embedding in central extension of ; Galois group of equation; Galois extension with alternating group; central extension of as Galois group; polynomials},

language = {eng},

number = {2},

pages = {79-82},

publisher = {Association des Annales de l'Institut Fourier},

title = {Polynomials over $Q$ solving an embedding problem},

url = {http://eudml.org/doc/74678},

volume = {35},

year = {1985},

}

TY - JOUR

AU - Vila, Nuria

TI - Polynomials over $Q$ solving an embedding problem

JO - Annales de l'institut Fourier

PY - 1985

PB - Association des Annales de l'Institut Fourier

VL - 35

IS - 2

SP - 79

EP - 82

AB - The fields defined by the polynomials constructed in E. Nart and the author in J. Number Theory 16, (1983), 6–13, Th. 2.1, with absolute Galois group the alternating group $A_ n$, can be embedded in any central extension of $A_ n$ if and only if $n\equiv 0 (mod 8)$, or $n\equiv 2 (mod 8)$ and $n$ is a sum of two squares. Consequently, for theses values of $n$, every central extension of $A_ n$ occurs as a Galois group over ${\bf Q}$.

LA - eng

KW - embedding in central extension of ; Galois group of equation; Galois extension with alternating group; central extension of as Galois group; polynomials

UR - http://eudml.org/doc/74678

ER -

## References

top- [1] B. HUPPERT, Endliche Gruppen I, Die Grund. der Math. Wiss., 134, Springer, 1967. Zbl0217.07201MR37 #302
- [2] E. NART and N. VILA, Equations with absolute Galois group isomorphic to An, J. Number Th., 16 (1983), 6-13. Zbl0511.12010MR85b:11081
- [3] I. SCHUR, Ùber die Darstellungen der symmetrischen und alternierender Gruppen durch gebrochene lineare Substitutionen, J. reine angew. Math., 139 (1911), 155-250. Zbl42.0154.02JFM42.0154.02
- [4] J.-P. SERRE, L'invariant de Witt de la forme Tr (x2), Com. Math. Helv., to appear. Zbl0565.12014
- [5] N. VILA, On central extensions of An as Galois group over Q, to appear. Zbl0562.12011

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.