Bounded double square functions
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 2, page 69-82
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPipher, Jill. "Bounded double square functions." Annales de l'institut Fourier 36.2 (1986): 69-82. <http://eudml.org/doc/74717>.
@article{Pipher1986,
abstract = {We extend some recent work of S. Y. Chang, J. M. Wilson and T. Wolff to the bidisc. For $f\in L^ 1_\{loc\}(\{\bf R\}^ 2)$, we determine the sharp order of local integrability obtained when the square function of $f$ is in $L^\{\infty \}$. The Calderón-Torchinsky decomposition reduces the problem to the case of double dyadic martingales. Here we prove a vector-valued form of an inequality for dyadic martingales that yields the sharp dependence on p of $C_ p$ in $\Vert f\Vert _ p\le C_ p\Vert Sf\Vert _ p$.},
author = {Pipher, Jill},
journal = {Annales de l'institut Fourier},
keywords = {Calderòn-Torchinsky decomposition; double dyadic martingales; vector- valued form of an inequality for dyadic martingales},
language = {eng},
number = {2},
pages = {69-82},
publisher = {Association des Annales de l'Institut Fourier},
title = {Bounded double square functions},
url = {http://eudml.org/doc/74717},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Pipher, Jill
TI - Bounded double square functions
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 2
SP - 69
EP - 82
AB - We extend some recent work of S. Y. Chang, J. M. Wilson and T. Wolff to the bidisc. For $f\in L^ 1_{loc}({\bf R}^ 2)$, we determine the sharp order of local integrability obtained when the square function of $f$ is in $L^{\infty }$. The Calderón-Torchinsky decomposition reduces the problem to the case of double dyadic martingales. Here we prove a vector-valued form of an inequality for dyadic martingales that yields the sharp dependence on p of $C_ p$ in $\Vert f\Vert _ p\le C_ p\Vert Sf\Vert _ p$.
LA - eng
KW - Calderòn-Torchinsky decomposition; double dyadic martingales; vector- valued form of an inequality for dyadic martingales
UR - http://eudml.org/doc/74717
ER -
References
top- [1] A. BERNARD, Espaces H1 de martingales à deux indices, dualité avec les martingales de types BMO, Bull. Sci. Math., 103 (1979), 297-303. Zbl0403.60047MR82d:60092
- [2] L. CARLESON, A counterexample for measures bounded on Hp spaces for the bidisk, Mittag-Leffler Report F. (1974).
- [3] S.-Y. A. CHANG and R. FEFFERMAN, A continuous version of duality of H1 with BMO on the Bidisk, Ann. Math., 112 (1980), 179-201. Zbl0451.42014MR82a:32009
- [4] S.-Y. A. CHANG, J. M. WILSON and T. H. WOLFF, Some weighted norm inequalities concerning the Schrödinger operator, Comm. Math. Helv., (1985). Zbl0575.42025
- [5] R. DURRETT, Brownian Motion and Martingales in Analysis, Wadsworth (1984). Zbl0554.60075MR87a:60054
- [6] J. GARNETT, Bounded Analytic Functions, Academic Press, New-York (1950).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.