Bounded double square functions

Jill Pipher

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 2, page 69-82
  • ISSN: 0373-0956

Abstract

top
We extend some recent work of S. Y. Chang, J. M. Wilson and T. Wolff to the bidisc. For f L l o c 1 ( R 2 ) , we determine the sharp order of local integrability obtained when the square function of f is in L . The Calderón-Torchinsky decomposition reduces the problem to the case of double dyadic martingales. Here we prove a vector-valued form of an inequality for dyadic martingales that yields the sharp dependence on p of C p in f p C p S f p .

How to cite

top

Pipher, Jill. "Bounded double square functions." Annales de l'institut Fourier 36.2 (1986): 69-82. <http://eudml.org/doc/74717>.

@article{Pipher1986,
abstract = {We extend some recent work of S. Y. Chang, J. M. Wilson and T. Wolff to the bidisc. For $f\in L^ 1_\{loc\}(\{\bf R\}^ 2)$, we determine the sharp order of local integrability obtained when the square function of $f$ is in $L^\{\infty \}$. The Calderón-Torchinsky decomposition reduces the problem to the case of double dyadic martingales. Here we prove a vector-valued form of an inequality for dyadic martingales that yields the sharp dependence on p of $C_ p$ in $\Vert f\Vert _ p\le C_ p\Vert Sf\Vert _ p$.},
author = {Pipher, Jill},
journal = {Annales de l'institut Fourier},
keywords = {Calderòn-Torchinsky decomposition; double dyadic martingales; vector- valued form of an inequality for dyadic martingales},
language = {eng},
number = {2},
pages = {69-82},
publisher = {Association des Annales de l'Institut Fourier},
title = {Bounded double square functions},
url = {http://eudml.org/doc/74717},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Pipher, Jill
TI - Bounded double square functions
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 2
SP - 69
EP - 82
AB - We extend some recent work of S. Y. Chang, J. M. Wilson and T. Wolff to the bidisc. For $f\in L^ 1_{loc}({\bf R}^ 2)$, we determine the sharp order of local integrability obtained when the square function of $f$ is in $L^{\infty }$. The Calderón-Torchinsky decomposition reduces the problem to the case of double dyadic martingales. Here we prove a vector-valued form of an inequality for dyadic martingales that yields the sharp dependence on p of $C_ p$ in $\Vert f\Vert _ p\le C_ p\Vert Sf\Vert _ p$.
LA - eng
KW - Calderòn-Torchinsky decomposition; double dyadic martingales; vector- valued form of an inequality for dyadic martingales
UR - http://eudml.org/doc/74717
ER -

References

top
  1. [1] A. BERNARD, Espaces H1 de martingales à deux indices, dualité avec les martingales de types BMO, Bull. Sci. Math., 103 (1979), 297-303. Zbl0403.60047MR82d:60092
  2. [2] L. CARLESON, A counterexample for measures bounded on Hp spaces for the bidisk, Mittag-Leffler Report F. (1974). 
  3. [3] S.-Y. A. CHANG and R. FEFFERMAN, A continuous version of duality of H1 with BMO on the Bidisk, Ann. Math., 112 (1980), 179-201. Zbl0451.42014MR82a:32009
  4. [4] S.-Y. A. CHANG, J. M. WILSON and T. H. WOLFF, Some weighted norm inequalities concerning the Schrödinger operator, Comm. Math. Helv., (1985). Zbl0575.42025
  5. [5] R. DURRETT, Brownian Motion and Martingales in Analysis, Wadsworth (1984). Zbl0554.60075MR87a:60054
  6. [6] J. GARNETT, Bounded Analytic Functions, Academic Press, New-York (1950). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.