Interpolating sequences of complex hyperplanes in the unit ball of n

Pascal J. Thomas

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 3, page 167-181
  • ISSN: 0373-0956

Abstract

top
A sufficient condition is given to make a sequence of hyperplanes in the complex unit ball an interpolating sequence for H , i.e. bounded holomorphic functions on the hyperplanes can be boundedly extended.

How to cite

top

Thomas, Pascal J.. "Interpolating sequences of complex hyperplanes in the unit ball of ${\mathbb {C}}^n$." Annales de l'institut Fourier 36.3 (1986): 167-181. <http://eudml.org/doc/74722>.

@article{Thomas1986,
abstract = {A sufficient condition is given to make a sequence of hyperplanes in the complex unit ball an interpolating sequence for $H^\infty $, i.e. bounded holomorphic functions on the hyperplanes can be boundedly extended.},
author = {Thomas, Pascal J.},
journal = {Annales de l'institut Fourier},
keywords = {Carleson measures; unit ball; interpolating sequence for ; sequences of hyperplanes},
language = {eng},
number = {3},
pages = {167-181},
publisher = {Association des Annales de l'Institut Fourier},
title = {Interpolating sequences of complex hyperplanes in the unit ball of $\{\mathbb \{C\}\}^n$},
url = {http://eudml.org/doc/74722},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Thomas, Pascal J.
TI - Interpolating sequences of complex hyperplanes in the unit ball of ${\mathbb {C}}^n$
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 167
EP - 181
AB - A sufficient condition is given to make a sequence of hyperplanes in the complex unit ball an interpolating sequence for $H^\infty $, i.e. bounded holomorphic functions on the hyperplanes can be boundedly extended.
LA - eng
KW - Carleson measures; unit ball; interpolating sequence for ; sequences of hyperplanes
UR - http://eudml.org/doc/74722
ER -

References

top
  1. [1] E. AMAR, Extension de fonctions analytiques avec estimation, Ark. Mat., 17, no. 1 (1979). Zbl0446.32004MR81a:46029
  2. [2] B. BERNDTSSON, An L∞-estimate for the ∂-equation in the unit ball of Cn, preprint, Göteborg, 1983. Zbl0523.32014
  3. [3] B. BERNDTSSON, Interpolating sequences for H∞ in the ball, Nederl. Akad. Wetensch. Indag. Math., 88 (1985). Zbl0588.32006MR87a:32007
  4. [4] L. CARLESON, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921-930. Zbl0085.06504MR22 #8129
  5. [5] J. GARNETT, Bounded Analytic Functions, Academic Press, 1981. Zbl0469.30024MR83g:30037
  6. [6] M. HAKIM & N. SIBONY, Ensembles des zéros d'une fonction holomorphe bornée dans la boule unité, Math. Ann., 260, no. 4 (1982), 469-474. Zbl0499.32006MR83j:32001
  7. [7] W. RUDIN, Function Theory in the Unit Ball of Cn, Springer-Verlag, 1980. Zbl0495.32001MR82i:32002
  8. [8] H. SKODA, Valeurs au bord pour les solutions de l’opérateur d " et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104, no. 3 (1976), 225-299. Zbl0351.31007MR56 #8913
  9. [9] N. Th. VAROPOULOS, Ensembles pics et ensembles d'interpolation pour les algèbres uniformes, C.R.A.S., Paris, Sér. A, 272 (1970), 866-867. Zbl0214.13903
  10. [10] N. Th. VAROPOULOS, Sur un problème d'interpolation, C.R.A.S., Paris, Sér. A 274 (1972), 1539-1542. Zbl0236.41001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.