Bounded analytic sets in Banach spaces

Volker Aurich

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 4, page 229-243
  • ISSN: 0373-0956

Abstract

top
Conditions are given which enable or disable a complex space X to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of X .

How to cite

top

Aurich, Volker. "Bounded analytic sets in Banach spaces." Annales de l'institut Fourier 36.4 (1986): 229-243. <http://eudml.org/doc/74737>.

@article{Aurich1986,
abstract = {Conditions are given which enable or disable a complex space $X$ to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of $X$.},
author = {Aurich, Volker},
journal = {Annales de l'institut Fourier},
keywords = {bounded closed analytic subset of a Banach space; Radon-Nikodym property; completeness of the Caratheodory metric},
language = {eng},
number = {4},
pages = {229-243},
publisher = {Association des Annales de l'Institut Fourier},
title = {Bounded analytic sets in Banach spaces},
url = {http://eudml.org/doc/74737},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Aurich, Volker
TI - Bounded analytic sets in Banach spaces
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 4
SP - 229
EP - 243
AB - Conditions are given which enable or disable a complex space $X$ to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of $X$.
LA - eng
KW - bounded closed analytic subset of a Banach space; Radon-Nikodym property; completeness of the Caratheodory metric
UR - http://eudml.org/doc/74737
ER -

References

top
  1. [1] V. AURICH, Bifurcation of the solutions of holomorphic Fredholm equations and complex analytic graph theorems, Nonlinear Analysis, Theory, Methods et Applications, 6 (1982), 599-613. Zbl0487.58006MR83m:58018
  2. [2] V. AURICH, Bounded holomorphic embeddings of the unit disk into Banach spaces, Manuscripta Math., 45 (1983), 61-67. Zbl0525.46014MR85b:58012
  3. [3] V. AURICH, Über die Lösungsmengen analytischer semi-Fredholmscher Gleichungen, Habilitationsschrift, München, 1983. 
  4. [4] L. BUNGART, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Amer. Soc., 111 (1964), 317-344. Zbl0142.33902MR28 #245
  5. [5] D. BURGHELA, N. KUIPER, Hilbert manifolds, Ann. Math., 90 (1969), 379-417. Zbl0195.53501MR40 #6589
  6. [6] J. DIESTEL, J. J. UHL Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc. (1977). Zbl0369.46039
  7. [7] A. DOUADY, A remark on Banach analytic spaces. Symp. Infinite Dimens. Top., Ann. Math. Stud., 69 (1972), 41-42. Zbl0229.54031MR53 #8504
  8. [8] T. FRANZONI, E. VESENTINI, Holomorphic maps and invariant distances, Math. Stud., 40, North Holland, 1980. Zbl0447.46040MR82a:32032
  9. [9] L. A. HARRIS, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Adv. in Holom., Ed.: J. A. Barroso, North Holland, 1979. Zbl0409.46053MR80j:32043
  10. [10] W. HENSGEN, Die Michael-Vermutung und verwandte Fragestellungen, Diplomarbeit, München, 1981. 
  11. [11] R. E. HUFF, P. D. MORRIS, Geometric characterizations of the Radon-Nikodym property in Banach spaces, Stud. Math., 56 (1976), 157-164. Zbl0351.46011MR54 #897
  12. [12] W. KAUP, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math., 3 (1967), 43-70. Zbl0157.13401MR35 #6865
  13. [13] S. KOBAYASHI, Hyperbolic manifolds and holomorphic mappings, M. Dekker Inc., New York, 1970. Zbl0207.37902MR43 #3503
  14. [14] A. NAGEL, W. RUDIN, Moebius-invariant function spaces on balls and spheres, Duke Math. J., 43 (1976), 841-865. Zbl0343.32017MR54 #13135
  15. [15] J. P. RAMIS, Sous-ensembles analytiques d'une variété banachique complexe, Ergeb. der Math., 53, Springer, 1970. Zbl0212.42802MR45 #2205
  16. [16] W. RUDIN, Function theory in the unit ball of Cn, Grundlehren, 241, Springer 1980. Zbl0495.32001MR82i:32002
  17. [17] M. SCHOTTENLOHER, Embedding of Stein 'spaces into sequence spaces, Manuscripta math., 39 (1982), 15-29. Zbl0477.32014MR84f:32017
  18. [18] M. SCHOTTENLOHER, Michael problem and algebras of holomorphic functions, Archiv der Math., 37 (1981), 241-247. Zbl0471.46036MR83b:46061
  19. [19] N. SIBONY, Prolongement des fonctions holomorphes bornées et métrique de Carathéodory, Invent. Math., 29 (1975), 231-238. Zbl0333.32011MR52 #6029
  20. [20] S. SMALE, An infinite dimensional version of Sard's theorem, Amer. J. of Math., 87 (1965), 861-866. Zbl0143.35301MR32 #3067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.