# Graded morphisms of $G$-modules

Hanspeter Kraft; Claudio Procesi

Annales de l'institut Fourier (1987)

- Volume: 37, Issue: 4, page 161-166
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topKraft, Hanspeter, and Procesi, Claudio. "Graded morphisms of $G$-modules." Annales de l'institut Fourier 37.4 (1987): 161-166. <http://eudml.org/doc/74772>.

@article{Kraft1987,

abstract = {Let $A$ be finite dimensional $\{\bf C\}$-algebra which is a complete intersection, i.e. $A=\{\bf C\}[X_1,\ldots ,X_n]/(f_1,\ldots ,f_n)$ whith a regular sequences $f_1,\ldots ,f_n$. Steve Halperin conjectured that the connected component of the automorphism group of such an algebra $A$ is solvable. We prove this in case $A$ is in addition graded and generated by elements of degree 1.},

author = {Kraft, Hanspeter, Procesi, Claudio},

journal = {Annales de l'institut Fourier},

keywords = {solvable automorphism group; graded morphism; polynomial ring},

language = {eng},

number = {4},

pages = {161-166},

publisher = {Association des Annales de l'Institut Fourier},

title = {Graded morphisms of $G$-modules},

url = {http://eudml.org/doc/74772},

volume = {37},

year = {1987},

}

TY - JOUR

AU - Kraft, Hanspeter

AU - Procesi, Claudio

TI - Graded morphisms of $G$-modules

JO - Annales de l'institut Fourier

PY - 1987

PB - Association des Annales de l'Institut Fourier

VL - 37

IS - 4

SP - 161

EP - 166

AB - Let $A$ be finite dimensional ${\bf C}$-algebra which is a complete intersection, i.e. $A={\bf C}[X_1,\ldots ,X_n]/(f_1,\ldots ,f_n)$ whith a regular sequences $f_1,\ldots ,f_n$. Steve Halperin conjectured that the connected component of the automorphism group of such an algebra $A$ is solvable. We prove this in case $A$ is in addition graded and generated by elements of degree 1.

LA - eng

KW - solvable automorphism group; graded morphism; polynomial ring

UR - http://eudml.org/doc/74772

ER -

## References

top- [1] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik D1, Vieweg-Verlag, 1985. Zbl0669.14003

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.