Graded morphisms of -modules
Hanspeter Kraft; Claudio Procesi
Annales de l'institut Fourier (1987)
- Volume: 37, Issue: 4, page 161-166
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKraft, Hanspeter, and Procesi, Claudio. "Graded morphisms of $G$-modules." Annales de l'institut Fourier 37.4 (1987): 161-166. <http://eudml.org/doc/74772>.
@article{Kraft1987,
abstract = {Let $A$ be finite dimensional $\{\bf C\}$-algebra which is a complete intersection, i.e. $A=\{\bf C\}[X_1,\ldots ,X_n]/(f_1,\ldots ,f_n)$ whith a regular sequences $f_1,\ldots ,f_n$. Steve Halperin conjectured that the connected component of the automorphism group of such an algebra $A$ is solvable. We prove this in case $A$ is in addition graded and generated by elements of degree 1.},
author = {Kraft, Hanspeter, Procesi, Claudio},
journal = {Annales de l'institut Fourier},
keywords = {solvable automorphism group; graded morphism; polynomial ring},
language = {eng},
number = {4},
pages = {161-166},
publisher = {Association des Annales de l'Institut Fourier},
title = {Graded morphisms of $G$-modules},
url = {http://eudml.org/doc/74772},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Kraft, Hanspeter
AU - Procesi, Claudio
TI - Graded morphisms of $G$-modules
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 161
EP - 166
AB - Let $A$ be finite dimensional ${\bf C}$-algebra which is a complete intersection, i.e. $A={\bf C}[X_1,\ldots ,X_n]/(f_1,\ldots ,f_n)$ whith a regular sequences $f_1,\ldots ,f_n$. Steve Halperin conjectured that the connected component of the automorphism group of such an algebra $A$ is solvable. We prove this in case $A$ is in addition graded and generated by elements of degree 1.
LA - eng
KW - solvable automorphism group; graded morphism; polynomial ring
UR - http://eudml.org/doc/74772
ER -
References
top- [1] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik D1, Vieweg-Verlag, 1985. Zbl0669.14003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.