Vanishing theorems on cohomology associated to hermitian symmetric spaces

Shingo Murakami

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 4, page 225-233
  • ISSN: 0373-0956

Abstract

top
We consider the cohomoly groups of compact locally Hermitian symmetric spaces with coefficients in the sheaf of germs of holomorphic sections of those vector bundles over the spaces which are defined by canonical automorphic factors. We give a quick survey of the research on these cohomology groups, and then discuss vanishing theorems of the cohomology groups.

How to cite

top

Murakami, Shingo. "Vanishing theorems on cohomology associated to hermitian symmetric spaces." Annales de l'institut Fourier 37.4 (1987): 225-233. <http://eudml.org/doc/74777>.

@article{Murakami1987,
abstract = {We consider the cohomoly groups of compact locally Hermitian symmetric spaces with coefficients in the sheaf of germs of holomorphic sections of those vector bundles over the spaces which are defined by canonical automorphic factors. We give a quick survey of the research on these cohomology groups, and then discuss vanishing theorems of the cohomology groups.},
author = {Murakami, Shingo},
journal = {Annales de l'institut Fourier},
keywords = {cohomology groups of compact locally Hermitian symmetric spaces; coefficients in the sheaf of germs of holomorphic sections; canonical automorphic factors},
language = {eng},
number = {4},
pages = {225-233},
publisher = {Association des Annales de l'Institut Fourier},
title = {Vanishing theorems on cohomology associated to hermitian symmetric spaces},
url = {http://eudml.org/doc/74777},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Murakami, Shingo
TI - Vanishing theorems on cohomology associated to hermitian symmetric spaces
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 225
EP - 233
AB - We consider the cohomoly groups of compact locally Hermitian symmetric spaces with coefficients in the sheaf of germs of holomorphic sections of those vector bundles over the spaces which are defined by canonical automorphic factors. We give a quick survey of the research on these cohomology groups, and then discuss vanishing theorems of the cohomology groups.
LA - eng
KW - cohomology groups of compact locally Hermitian symmetric spaces; coefficients in the sheaf of germs of holomorphic sections; canonical automorphic factors
UR - http://eudml.org/doc/74777
ER -

References

top
  1. [1] G. W. ANDERSON, Theta functions and holomorphic differential forms on compact quotients of bounded symmetric domains, Duke Math. J., 50 (1983), 1137-1170. Zbl0557.32006MR85i:32047
  2. [2] A. BOREL and N. WALLACH, Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton, Princeton University Press, 1980. (Annals of mathematical studies, 94.) Zbl0443.22010
  3. [3] G. FALTINGS, On the cohomology of locally symmetric Hermitian symmetric spaces, Paul Dubriel and Marie-Paul Malliavin algebra seminar, 25th year (Paris, 1982), 55-98, Lecture Notes in Math., 1029 (1983). Zbl0539.22008
  4. [4] R. HOTTA and S. MURAKAMI, On a vanishing theorem for certain cohomology groups, Osaka J. Math., 12 (1975), 555-564. Zbl0328.57020MR57 #6291
  5. [5] R. HOTTA and N. WALLACH, On Matsushima's formula for the Betti numbers of a locally symmetric space, Osaka J. Math., 12 (1975), 419-431. Zbl0327.53032MR52 #661
  6. [6] J. L. KOSZUL, Formes harmoniques vectorielles sur espaces localement symétriques, Geometry of Homogeneous Bounded Domains, C.I.M.E. 3 Ciclo, 1967, 197-260. Zbl0183.50903
  7. [7] S. KUMARESAN, On the canonical k-types in the irreducible unitary g-modules with non-zero relative cohomology, Inventiones Math., 59 (1980), 1-11. Zbl0442.22010MR83c:17011
  8. [8] Y. MATSUSHIMA, On the first Betti number of compact quotient spaces of higher dimensional symmetric spaces, Ann. of Math., 75 (1962), 312-330. Zbl0118.38303MR28 #1629
  9. [9] Y. MATSUSHIMA, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka J. Math., 14 (1982), 312-330. Zbl0118.38401
  10. [10] Y. MATSUSHIMA, A formula for the Betti numbers of locally symmetric Riemannian manifolds, J. Differential Geometry, 1 (1987), 99-109. Zbl0164.22101MR36 #5958
  11. [11] Y. MATSUSHIMA and S. MURAKAMI, On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math., 78 (1963), 365-416. Zbl0125.10702MR27 #2997
  12. [12] Y. MATSUSHIMA and S. MURAKAMI, On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math., 2 (1965), 1-35. Zbl0142.19503MR32 #1728
  13. [13] Y. MATSUSHIMA and S. MURAKAMI, On certain cohomology groups attached to Hermitian symmetric spaces (II), Osaka J. Math., 5 (1968), 223-241. Zbl0183.26103MR42 #1145
  14. [14] S. MURAKAMI, Cohomology of vector-valued forms on compact, locally symmetric Riemannian manifolds, Proceeding Symposia in Pure Mathematics, vol. 9, Algebraic groups and discontinuous subgroups, 1966, 387-399. Zbl0208.24402MR34 #6803
  15. [15] S. MURAKAMI, Cohomology groups of vector-valued forms on symmetric spaces, Lecture Notes, University of Chicago, 1966. 
  16. [16] S. MURAKAMI, Facteur d'automorphie associé à un espace hermitien symétrique, Geometry of Homogeneous Bounded Domains, C.I.M.E. 3 Ciclo, (1967), 281-287. Zbl0187.02902
  17. [17] S. MURAKAMI, Certain cohomology groups attached to Hermitian symmetric spaces and unitary representations, Southeast Asian Bull. Math., 5 (1981), 39-44. Zbl0496.22020MR83e:32034
  18. [18] S. MURAKAMI, Laplacians and cohomologies associated to locally symmetric Hermitian manifolds, Spectra of Riemannian Manifolds (Proceedings of the France-Japan Seminar, Kyoto, 1981), Kaigai Publ. Tokyo, (1983), 73-78. 
  19. [19] R. PARTHASARATHY, A note of the vanishing of L²-cohomologies, J. Math. Soc. Japan, 22 (1971), 1-30. 
  20. [20] R. PARTHASARATHY, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci., 89 (1980), 1-24. Zbl0434.22011MR82c:22020
  21. [21] D. A. VOGAN and G. J. ZUCKERMAN, Unitary representations with non-zero cohomology, Compositio Mathematica, 53 (1984), 51-90. Zbl0692.22008MR86k:22040
  22. [22] F. L. WILLIAMS, Vanishing theorems for type (0,q)-cohomology of locally symmetric spaces, Osaka J. Math., 18 (1981), 147-160. Zbl0469.32011MR82k:22013
  23. [23] F. L. WILLIAMS, Remarks on the unitary representations appearing in the Matsushima-Murakami formula, Proceeding of the Conference on Non-commutative Harmonic Analysis, Marseille-Luminy, France, Lecture Notes in Math., 880 (1981), 536-553. Zbl0508.22015MR83e:22017
  24. [24] F. L. WILLIAMS, Vanishing theorems for type (0,q)-cohomology of locally symmetric spaces II, Osaka J. Math., 20 (1983), 95-108. Zbl0523.22016MR84h:22031
  25. [25] S. ZUCKER, Locally homogeneous variations of Hodge structure, L'Enseignement Mathématiques, IIe série, 27 (1981), 243-276. Zbl0584.14003MR83m:32034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.