Super boson-fermion correspondence
Victor G. Kac; J. W. Van de Leur
Annales de l'institut Fourier (1987)
- Volume: 37, Issue: 4, page 99-137
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKac, Victor G., and Van de Leur, J. W.. "Super boson-fermion correspondence." Annales de l'institut Fourier 37.4 (1987): 99-137. <http://eudml.org/doc/74784>.
@article{Kac1987,
abstract = {We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra $\tilde\{g\} l_\{1\vert 1\}$. The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions of all degenerate highest weight representations of $\tilde\{g\} l_\{1\vert 1\}$ and of some interesting representations of $\tilde\{g\} l_\{\infty \vert \infty \}(\{\bf C\})$, and also derive some new combinatorial identities. We hope that this construction will provide representation theoretical framework for hierarchies of super soliton equations.},
author = {Kac, Victor G., Van de Leur, J. W.},
journal = {Annales de l'institut Fourier},
keywords = {super boson-fermion correspondence; quantum field theory; bosonic fields; superbosonic fields; affine superalgebra; super fermionization procedure; super vertex operators; highest weight representations; combinatorial identities},
language = {eng},
number = {4},
pages = {99-137},
publisher = {Association des Annales de l'Institut Fourier},
title = {Super boson-fermion correspondence},
url = {http://eudml.org/doc/74784},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Kac, Victor G.
AU - Van de Leur, J. W.
TI - Super boson-fermion correspondence
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 99
EP - 137
AB - We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra $\tilde{g} l_{1\vert 1}$. The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions of all degenerate highest weight representations of $\tilde{g} l_{1\vert 1}$ and of some interesting representations of $\tilde{g} l_{\infty \vert \infty }({\bf C})$, and also derive some new combinatorial identities. We hope that this construction will provide representation theoretical framework for hierarchies of super soliton equations.
LA - eng
KW - super boson-fermion correspondence; quantum field theory; bosonic fields; superbosonic fields; affine superalgebra; super fermionization procedure; super vertex operators; highest weight representations; combinatorial identities
UR - http://eudml.org/doc/74784
ER -
References
top- [1] E. DATE, M. JIMBO, M. KASHIWARA and T. MIWA, Operator approach to the Kadomstev-Petviashvili equation. Transformation groups for soliton equations III, J. Phys. Soc. Japan, 50 (1981), 3806-3812. Zbl0571.35099MR84m:58119c
- [2] E. DATE, M. JIMBO, M. KASHIWARA, T. MIWA, Transformation groups for soliton equations, in : Proceedings of RIMS Symposium, M. Jimbo and T. Miwa, eds., World Scientific, 1983, 34-120. Zbl0571.35098MR86a:58093
- [3] J. C. JANTZEN, Moduln mit einem höchsten Gewicht, Lecture Notes in Math., 750 Springer-Verlag, 1979. Zbl0426.17001MR81m:17011
- [4] M. JIMBO and T. MIWA, Solitons and infinite dimensional Lie algebras, Publ. RIMS, 19 (1983), 943-1001. Zbl0557.35091MR85i:58060
- [5] V. G. KAC, Infinite-dimensional Lie algebras and Dedekinds η-function, Funkt. Anal. i ego Prilozh, 8 (1974), No. 1, 77-78. English translation : Funct. Anal. Appl., 8 (1974), 68-70. Zbl0299.17005
- [6] V. G. KAC, Lie superalgebras, Advances in Math., 26, No. 1 (1977), 8-96. Zbl0366.17012MR58 #5803
- [7] V. G. KAC, Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Advances in Math., 30 (1978), 85-136. Zbl0391.17010MR83a:17014a
- [8] V. G. KAC, Representations of classical Lie superalgebras, Lecture Notes in Mathematics, 676 (1978), 597-626. Zbl0388.17002MR80f:17006
- [9] V. G. KAC, Contravariant form for infinite dimensional Lie algebras and superalgebras, Lecture Notes in Physics, 94 (1979), 441-445. Zbl0574.17002
- [10] V. G. KAC, Infinite Dimensional Lie Algebras. Progress in Mathematics, 44, Birkhäuser, Boston, 1983. Second edition, Cambridge University Press, 1985. Zbl0537.17001MR86h:17015
- [11] V. G. KAC, Highest weight representations of conformal current algebras, Symposium on Topological and Geometric and methods in Field theory. Espoo, Finland, World Scientific (1986), 3-16. Zbl0637.17012
- [12] V. G. KAC, D. A. KAZHDAN, Structure of representations with highest weight of infinite dimensional Lie algebras, Advances in Math., 34 (1979), 97-108. Zbl0427.17011MR81d:17004
- [13] V. G. KAC, D. PETERSON, Lectures on the infinite wedge representation and the MKP hierarchy. Séminaire de Math. Supérieures, Les Presses de L'Université de Montréal, 102 (1986), 141-186. Zbl0638.35070MR88f:17021
- [14] J. W. VAN DE LEUR, Contragredient Lie superalgebras of finite growth, Thesis Utrecht, May 1986. Zbl0685.17013
- [15] Ju. I. MANIN and A. O. RADUL, A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Comm. Math. Phys., 98 (1985), 65-77. Zbl0607.35075MR87b:58038
- B. KUPERSHMIDT, Odd and even Poisson brackets in dynamical systems, Lett. Math. Phys., 9 (1985), 323-330. Zbl0585.58020MR86h:58057
- [16] M. SATO, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku, 439 (1981), 30-46. Zbl0507.58029
- [17] T. SHIOTA, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83 (1986), 333-382. Zbl0621.35097MR87j:14047
- [18] E. ARBARELLO and C. DE CONCINI, On a set of equations characterising Riemann matrices, Ann. Math., 120 (1984), 119-140. Zbl0551.14016MR86a:14025
- [19] M. MULASE, Cohomological structure in soliton equation and Jacobian varieties, J. Diff. Geom., 19 (1984), 403-430. Zbl0559.35076MR86f:14016
- [20] T. H. R. SKYRME, Kinks and the Dirac equation, J. Math. Physics, 12 (1971), 1735-1743.
- [21] K. UENO, H. YAMADA, A supersymmetric extension of infinite-dimensional Lie algebras, RIMS-Kokyuroku, 554 (1955), 91-101.
- [22] K. UENO and H. YAMADA, A supersymmetric extension of nonlinear integrable systems. Symposium on Topological and Geometric methods in Field theory. Espoo, Finland, World Scientific (1986), 59-72. Zbl0653.35076MR91c:58053
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.