Super boson-fermion correspondence

Victor G. Kac; J. W. Van de Leur

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 4, page 99-137
  • ISSN: 0373-0956

Abstract

top
We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra g ˜ l 1 | 1 . The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions of all degenerate highest weight representations of g ˜ l 1 | 1 and of some interesting representations of g ˜ l | ( C ) , and also derive some new combinatorial identities. We hope that this construction will provide representation theoretical framework for hierarchies of super soliton equations.

How to cite

top

Kac, Victor G., and Van de Leur, J. W.. "Super boson-fermion correspondence." Annales de l'institut Fourier 37.4 (1987): 99-137. <http://eudml.org/doc/74784>.

@article{Kac1987,
abstract = {We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra $\tilde\{g\} l_\{1\vert 1\}$. The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions of all degenerate highest weight representations of $\tilde\{g\} l_\{1\vert 1\}$ and of some interesting representations of $\tilde\{g\} l_\{\infty \vert \infty \}(\{\bf C\})$, and also derive some new combinatorial identities. We hope that this construction will provide representation theoretical framework for hierarchies of super soliton equations.},
author = {Kac, Victor G., Van de Leur, J. W.},
journal = {Annales de l'institut Fourier},
keywords = {super boson-fermion correspondence; quantum field theory; bosonic fields; superbosonic fields; affine superalgebra; super fermionization procedure; super vertex operators; highest weight representations; combinatorial identities},
language = {eng},
number = {4},
pages = {99-137},
publisher = {Association des Annales de l'Institut Fourier},
title = {Super boson-fermion correspondence},
url = {http://eudml.org/doc/74784},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Kac, Victor G.
AU - Van de Leur, J. W.
TI - Super boson-fermion correspondence
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 99
EP - 137
AB - We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra $\tilde{g} l_{1\vert 1}$. The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions of all degenerate highest weight representations of $\tilde{g} l_{1\vert 1}$ and of some interesting representations of $\tilde{g} l_{\infty \vert \infty }({\bf C})$, and also derive some new combinatorial identities. We hope that this construction will provide representation theoretical framework for hierarchies of super soliton equations.
LA - eng
KW - super boson-fermion correspondence; quantum field theory; bosonic fields; superbosonic fields; affine superalgebra; super fermionization procedure; super vertex operators; highest weight representations; combinatorial identities
UR - http://eudml.org/doc/74784
ER -

References

top
  1. [1] E. DATE, M. JIMBO, M. KASHIWARA and T. MIWA, Operator approach to the Kadomstev-Petviashvili equation. Transformation groups for soliton equations III, J. Phys. Soc. Japan, 50 (1981), 3806-3812. Zbl0571.35099MR84m:58119c
  2. [2] E. DATE, M. JIMBO, M. KASHIWARA, T. MIWA, Transformation groups for soliton equations, in : Proceedings of RIMS Symposium, M. Jimbo and T. Miwa, eds., World Scientific, 1983, 34-120. Zbl0571.35098MR86a:58093
  3. [3] J. C. JANTZEN, Moduln mit einem höchsten Gewicht, Lecture Notes in Math., 750 Springer-Verlag, 1979. Zbl0426.17001MR81m:17011
  4. [4] M. JIMBO and T. MIWA, Solitons and infinite dimensional Lie algebras, Publ. RIMS, 19 (1983), 943-1001. Zbl0557.35091MR85i:58060
  5. [5] V. G. KAC, Infinite-dimensional Lie algebras and Dedekinds η-function, Funkt. Anal. i ego Prilozh, 8 (1974), No. 1, 77-78. English translation : Funct. Anal. Appl., 8 (1974), 68-70. Zbl0299.17005
  6. [6] V. G. KAC, Lie superalgebras, Advances in Math., 26, No. 1 (1977), 8-96. Zbl0366.17012MR58 #5803
  7. [7] V. G. KAC, Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Advances in Math., 30 (1978), 85-136. Zbl0391.17010MR83a:17014a
  8. [8] V. G. KAC, Representations of classical Lie superalgebras, Lecture Notes in Mathematics, 676 (1978), 597-626. Zbl0388.17002MR80f:17006
  9. [9] V. G. KAC, Contravariant form for infinite dimensional Lie algebras and superalgebras, Lecture Notes in Physics, 94 (1979), 441-445. Zbl0574.17002
  10. [10] V. G. KAC, Infinite Dimensional Lie Algebras. Progress in Mathematics, 44, Birkhäuser, Boston, 1983. Second edition, Cambridge University Press, 1985. Zbl0537.17001MR86h:17015
  11. [11] V. G. KAC, Highest weight representations of conformal current algebras, Symposium on Topological and Geometric and methods in Field theory. Espoo, Finland, World Scientific (1986), 3-16. Zbl0637.17012
  12. [12] V. G. KAC, D. A. KAZHDAN, Structure of representations with highest weight of infinite dimensional Lie algebras, Advances in Math., 34 (1979), 97-108. Zbl0427.17011MR81d:17004
  13. [13] V. G. KAC, D. PETERSON, Lectures on the infinite wedge representation and the MKP hierarchy. Séminaire de Math. Supérieures, Les Presses de L'Université de Montréal, 102 (1986), 141-186. Zbl0638.35070MR88f:17021
  14. [14] J. W. VAN DE LEUR, Contragredient Lie superalgebras of finite growth, Thesis Utrecht, May 1986. Zbl0685.17013
  15. [15] Ju. I. MANIN and A. O. RADUL, A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Comm. Math. Phys., 98 (1985), 65-77. Zbl0607.35075MR87b:58038
  16. B. KUPERSHMIDT, Odd and even Poisson brackets in dynamical systems, Lett. Math. Phys., 9 (1985), 323-330. Zbl0585.58020MR86h:58057
  17. [16] M. SATO, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku, 439 (1981), 30-46. Zbl0507.58029
  18. [17] T. SHIOTA, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83 (1986), 333-382. Zbl0621.35097MR87j:14047
  19. [18] E. ARBARELLO and C. DE CONCINI, On a set of equations characterising Riemann matrices, Ann. Math., 120 (1984), 119-140. Zbl0551.14016MR86a:14025
  20. [19] M. MULASE, Cohomological structure in soliton equation and Jacobian varieties, J. Diff. Geom., 19 (1984), 403-430. Zbl0559.35076MR86f:14016
  21. [20] T. H. R. SKYRME, Kinks and the Dirac equation, J. Math. Physics, 12 (1971), 1735-1743. 
  22. [21] K. UENO, H. YAMADA, A supersymmetric extension of infinite-dimensional Lie algebras, RIMS-Kokyuroku, 554 (1955), 91-101. 
  23. [22] K. UENO and H. YAMADA, A supersymmetric extension of nonlinear integrable systems. Symposium on Topological and Geometric methods in Field theory. Espoo, Finland, World Scientific (1986), 59-72. Zbl0653.35076MR91c:58053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.