Smoothability of proper foliations
John Cantwell; Lawrence Conlon
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 3, page 219-244
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCantwell, John, and Conlon, Lawrence. "Smoothability of proper foliations." Annales de l'institut Fourier 38.3 (1988): 219-244. <http://eudml.org/doc/74809>.
@article{Cantwell1988,
abstract = {Compact, $C^ 2$-foliated manifolds of codimension one, having all leaves proper, are shown to be $C^\{\infty \}$-smoothable. More precisely, such a foliated manifold is homeomorphic to one of class $C^\{\infty \}$. The corresponding statement is false for foliations with nonproper leaves. In that case, there are topological distinctions between smoothness of class $C^ r$ and of class $C^\{r+1\}$ for every nonnegative integer $r$.},
author = {Cantwell, John, Conlon, Lawrence},
journal = {Annales de l'institut Fourier},
keywords = {-foliated manifolds of codimension one having all leaves proper; foliations with nonproper leaves},
language = {eng},
number = {3},
pages = {219-244},
publisher = {Association des Annales de l'Institut Fourier},
title = {Smoothability of proper foliations},
url = {http://eudml.org/doc/74809},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Cantwell, John
AU - Conlon, Lawrence
TI - Smoothability of proper foliations
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 3
SP - 219
EP - 244
AB - Compact, $C^ 2$-foliated manifolds of codimension one, having all leaves proper, are shown to be $C^{\infty }$-smoothable. More precisely, such a foliated manifold is homeomorphic to one of class $C^{\infty }$. The corresponding statement is false for foliations with nonproper leaves. In that case, there are topological distinctions between smoothness of class $C^ r$ and of class $C^{r+1}$ for every nonnegative integer $r$.
LA - eng
KW - -foliated manifolds of codimension one having all leaves proper; foliations with nonproper leaves
UR - http://eudml.org/doc/74809
ER -
References
top- [C.C1] J. CANTWELL and L. CONLON, Leaf prescriptions for closed 3-manifolds, Trans. Amer. Math. Soc., 236 (1978), 239-261. Zbl0398.57009MR58 #31105a
- [C.C2] J. CANTWELL and L. CONLON, Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc., 265 (1981), 181-209. Zbl0484.57015MR82f:57019
- [C.C3] J. CANTWELL and L. CONLON, Nonexponential leaves at finite level, Trans. Amer. Math. Soc., 269 (1982), 637-661. Zbl0487.57009MR84h:57013
- [C.C4] J. CANTWELL and L. CONLON, Smoothing fractional growth, Tôhoku Math. J., 33 (1981), 249-262. Zbl0477.57014MR83e:57022
- [De] A. DENJOY, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375. Zbl58.1124.04JFM58.1124.04
- [Di] P. DIPPOLITO, Codimension one foliations of closed manifolds, Ann. of Math., 107 (1978), 403-453. Zbl0418.57012MR58 #24288
- [E.M.S.] R. EDWARDS, K. MILLETT and D. SULLIVAN, Foliations with all leaves compact, Topology, 16 (1977), 13-32. Zbl0356.57022MR55 #11268
- [E] D.B.A. EPSTEIN, Periodic flows on 3-manifolds, Ann. of Math., 95 (1972), 68-92. Zbl0231.58009MR44 #5981
- [F] H. FURSTENBERG, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981. Zbl0459.28023MR82j:28010
- [G] C. GODBILLON, Feuilletages, Études Géométriques II, Publ. Inst. de Recherche Math. Avancée, Univ. Louis Pasteur, Strasbourg, 1986. Zbl0724.58002
- [Hae] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367-397. Zbl0122.40702MR32 #6487
- [Har1] J. HARRISON, Unsmoothable diffeomorphisms, Ann. of Math., 102 (1975), 83-94. Zbl0316.57018MR52 #9294
- [Har2] J. HARRISON, Unsmoothable diffeomorphisms on higher dimensional manifolds, Proc. Amer. Math. Soc., 73 (1979), 249-255. Zbl0405.57019MR80g:57045
- [H.H] G. HECTOR and U. HIRSCH, Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983. Zbl0552.57001
- [I] T. INABA, On stability of proper leaves of codiménsion one foliations, J. Math. Soc. Japan, 29 (1977), 771-778. Zbl0356.57021MR58 #24291
- [M] K. MILLETT, Generic properties of proper foliations, I.H.E.S. preprint (1984). Zbl0674.57021
- [P] J.F. PLANTE, Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361. Zbl0314.57018MR52 #11947
- [S.S.] R. SACKSTEDER and A.J. SCHWARTZ, Limit sets of foliations, Ann. Inst. Fourier, 15-2 (1965), 201-214. Zbl0136.20904MR32 #6489
- [T] T. TSUBOI, Examples of non-smoothable actions on the interval, Preprint (1986). Zbl0671.58018
- [W] J. WOOD, Foliations on 3-manifolds, Ann. of Math., 89 (1969), 336-358. Zbl0176.21402MR40 #2123
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.