Points of order of generic formal groups
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 4, page 17-32
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. ARTIN, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967. Zbl0194.35301MR38 #5742
- [2] E. ARTIN, Geometric Algebra, Interscience Publishers, New York, 1957. Zbl0077.02101MR18,553e
- [3] V. G. DRINFEL'D, Elliptic modules, Math. USSR Sbornik, Vol. 23, N° 4, (1974), 561-592. Zbl0321.14014MR52 #5580
- [4] N. KATZ and B. MAZUR, Arithmetic Moduli of Eliptic Curves, Princeton University Press, New Jersey, 1985. Zbl0576.14026
- [5] S. LANG, Elliptic curves : Diophantine analysis, Springer Verlag 1978. Zbl0388.10001MR81b:10009
- [6] J. LUBIN, One parameter formal Lie groups over p-adic integer rings, Ann. of Math., 81 (1965), 380-387. Zbl0128.26501
- [7] J. LUBIN and J. TATE, Formal complex multiplication in local fields, Ann. of Math., 81 (1965), 380-387. Zbl0128.26501MR30 #3094
- [8] J. LUBIN and J. TATE, Formal moduli for one parameter formal Lie group, Bull. Soc. Math. France, 94 (1966), 49-60. Zbl0156.04105MR39 #214
- [9] J. LUBIN, Canonical subgroups of formal groups, Trans. Amer. Math. Soc., 251 (1979), 103-127. Zbl0431.14014MR80j:14039
- [10] J. LUBIN, The local Kronecker-Weber Theorem, Trans. Amer. Math. Soc., 267 (1981), 133-138. Zbl0476.12014MR82i:12017
- [11] M. NAGATA, Local Rings, Interscience Publishers, New York, 1962. Zbl0123.03402MR27 #5790