A class of non-algebraic threefolds

Matei Toma

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 1, page 239-250
  • ISSN: 0373-0956

Abstract

top
Let X be a compact complex nonsingular surface without curves, and E a holomorphic vector bundle of rank 2 on X . It turns out that the associated projective bundle P E has no divisors if and only if E is “strongly” irreducible. Using the results concerning irreducible bundles of [Banica-Le Potier, J. Crelle, 378 (1987), 1-31] and [Elencwajg- Forster, Annales Inst. Fourier, 32-4 (1982), 25-51] we give a proof of existence for bundles which are strongly irreducible.

How to cite

top

Toma, Matei. "A class of non-algebraic threefolds." Annales de l'institut Fourier 39.1 (1989): 239-250. <http://eudml.org/doc/74828>.

@article{Toma1989,
abstract = {Let $X$ be a compact complex nonsingular surface without curves, and $E$ a holomorphic vector bundle of rank 2 on $X$. It turns out that the associated projective bundle $\{\bf P\}E$ has no divisors if and only if $E$ is “strongly” irreducible. Using the results concerning irreducible bundles of [Banica-Le Potier, J. Crelle, 378 (1987), 1-31] and [Elencwajg- Forster, Annales Inst. Fourier, 32-4 (1982), 25-51] we give a proof of existence for bundles which are strongly irreducible.},
author = {Toma, Matei},
journal = {Annales de l'institut Fourier},
keywords = {compact complex surface; non-algebraic surface; complex threefold; holomorphic vector bundle; strongly irreducible bundles},
language = {eng},
number = {1},
pages = {239-250},
publisher = {Association des Annales de l'Institut Fourier},
title = {A class of non-algebraic threefolds},
url = {http://eudml.org/doc/74828},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Toma, Matei
TI - A class of non-algebraic threefolds
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 1
SP - 239
EP - 250
AB - Let $X$ be a compact complex nonsingular surface without curves, and $E$ a holomorphic vector bundle of rank 2 on $X$. It turns out that the associated projective bundle ${\bf P}E$ has no divisors if and only if $E$ is “strongly” irreducible. Using the results concerning irreducible bundles of [Banica-Le Potier, J. Crelle, 378 (1987), 1-31] and [Elencwajg- Forster, Annales Inst. Fourier, 32-4 (1982), 25-51] we give a proof of existence for bundles which are strongly irreducible.
LA - eng
KW - compact complex surface; non-algebraic surface; complex threefold; holomorphic vector bundle; strongly irreducible bundles
UR - http://eudml.org/doc/74828
ER -

References

top
  1. [1] C. BᾸNICᾸ & J. LE POTIER, Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. reine angew. Math., 378 (1987), 1-31. Zbl0624.32017MR89h:32054
  2. [2] W. BARTH, C. PETERS & A. VAN DE VEN, Compact complex surfaces, Berlin-Heidelberg-New York, 1984. Zbl0718.14023MR86c:32026
  3. [3] G. ELENCWAJG & O. FORSTER, Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier, 32-4 (1982), 25-51. Zbl0488.32012MR84f:32035
  4. [4] G. FISCHER, Complex Analytic Geometry, LNM 538, Berlin-Heidelberg-New York, 1976. Zbl0343.32002MR55 #3291
  5. [5] H. GRAUERT & R. REMMERT, Coherent analytic sheaves, Berlin-Heidelberg-New-York, 1984. Zbl0537.32001MR86a:32001
  6. [6] D. MUMFORD, Abelian varieties, Oxford Univ. Press, 1970. Zbl0223.14022MR44 #219

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.