The trivial locus of an analytic map germ

H. Hauser; G. Muller

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 4, page 831-844
  • ISSN: 0373-0956

Abstract

top
We prove: For a local analytic family { X s } s S of analytic space germs there is a largest subspace T in S such that the family is trivial over T . Moreover the reduction of T equals the germ of those points s in S for which X s is isomorphic to the special fibre X 0 .

How to cite

top

Hauser, H., and Muller, G.. "The trivial locus of an analytic map germ." Annales de l'institut Fourier 39.4 (1989): 831-844. <http://eudml.org/doc/74858>.

@article{Hauser1989,
abstract = {We prove: For a local analytic family $\lbrace X_s\rbrace _\{s\in S\}$ of analytic space germs there is a largest subspace $T$ in $S$ such that the family is trivial over $T$. Moreover the reduction of $T$ equals the germ of those points $s$ in $S$ for which $X_s$ is isomorphic to the special fibre $X_0$.},
author = {Hauser, H., Muller, G.},
journal = {Annales de l'institut Fourier},
keywords = {morphisms of analytic space germs; cartesian products; deformations},
language = {eng},
number = {4},
pages = {831-844},
publisher = {Association des Annales de l'Institut Fourier},
title = {The trivial locus of an analytic map germ},
url = {http://eudml.org/doc/74858},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Hauser, H.
AU - Muller, G.
TI - The trivial locus of an analytic map germ
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 4
SP - 831
EP - 844
AB - We prove: For a local analytic family $\lbrace X_s\rbrace _{s\in S}$ of analytic space germs there is a largest subspace $T$ in $S$ such that the family is trivial over $T$. Moreover the reduction of $T$ equals the germ of those points $s$ in $S$ for which $X_s$ is isomorphic to the special fibre $X_0$.
LA - eng
KW - morphisms of analytic space germs; cartesian products; deformations
UR - http://eudml.org/doc/74858
ER -

References

top
  1. [A] M. ARTIN, Algebraic approximation of structures over complete local rings, Publ. Math. IHES, 36 (1969), 23-58. Zbl0181.48802MR42 #3087
  2. [D] I. F. DONIN, Complete families of deformations of germs of complex spaces, Math. USSR-Sbornik, 18 (1972), 397-406. Zbl0275.32011MR48 #11574
  3. [E] R. EPHRAIM, Isosingular loci and the cartesian product structure of complex analytic singularities, Trans. Am. Math. Soc., 241 (1978), 357-371. Zbl0395.32006MR80i:32027
  4. [Fi] G. FISCHER, Complex analytic geometry, Springer Lect. Notes, 538, 1976. Zbl0343.32002MR55 #3291
  5. [FiG] W. FISCHER, H. GRAUERT, Lokal-triviale Familien kompakter komplexer Mannig-faltigkeiten, Nachr. Akad. Wiss. Göttingen, Math.-Phys. K1. II, 6 (1965), 89-94. Zbl0135.12601MR32 #1731
  6. [FIK] H. FLENNER, S. KOSAREW, On locally trivial deformations, Publ. Res. Inst. Math. Sci., 23 (1987), 627-665. Zbl0636.32010MR89c:32055
  7. [GaH] T. GAFFNEY, H. HAUSER, Characterizing singularities of varieties and of mappings, Invent. Math., 81 (1985), 427-447. Zbl0627.14004MR87m:32019
  8. [GrK] G.-M. GREUEL, U. KARRAS, Families cf varieties with prescribed singularities, Compos. Math., 69 (1989), 83-110. Zbl0684.32015MR90d:32037
  9. [H] J. E. HUMPHREYS, Linear algebraic groups, Springer, 1975. Zbl0325.20039MR53 #633
  10. [M] J. N. MATHER, Stability of C∞-mappings, III : Finitely determined map germs, Publ. Math. IHES, 35 (1968), 127-156. Zbl0159.25001MR43 #1215a
  11. [PfPo] G. PFISTER, D. POPESCU, Die strenge Approximationseigenschaft lokaler Ringe, Invent. Math., 30 (1975), 145-174. Zbl0293.13011MR52 #395
  12. [Se] A. SEIDENBERG, Analytic products, Am. J. Math., 91 (1969), 577-590. Zbl0185.49304MR40 #7261
  13. [Sc] H. W. SCHUSTER, Sur Theorie der Deformationen kompakter komplexer Räume, Invent. Math., 9 (1970), 284-294. Zbl0192.44201MR42 #3818
  14. [T] B. TEISSIER, The hunting of invariants in the geometry of discriminants, In : Real and complex singularities, Oslo 1976, 565-677. Holm, P., (ed.), Sijthoff and Noordhoff, 1977. Zbl0388.32010
  15. [V] V. S. VARADARAJAN, Lie groups, Lie algebras, and their representations, Prentice Hall, 1974. Zbl0371.22001MR51 #13113
  16. [W] J. J. WAVRIK, A theorem on solutions of analytic equations with applications to deformations of complex structures, Math. Ann., 216 (1975), 127-142. Zbl0303.32018MR52 #8488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.