Cohomology of G / P for classical complex Lie supergroups G and characters of some atypical G -modules

Ivan Penkov; Vera Serganova

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 4, page 845-873
  • ISSN: 0373-0956

Abstract

top
We compute the unique nonzero cohomology group of a generic G 0 - linearized locally free 𝒪 -module, where G 0 is the identity component of a complex classical Lie supergroup G and P G 0 is an arbitrary parabolic subsupergroup. In particular we prove that for G ( m ) , S ( m ) this cohomology group is an irreducible G 0 -module. As an application we generalize the character formula of typical irreducible G 0 -modules to a natural class of atypical modules arising in this way.

How to cite

top

Penkov, Ivan, and Serganova, Vera. "Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules." Annales de l'institut Fourier 39.4 (1989): 845-873. <http://eudml.org/doc/74859>.

@article{Penkov1989,
abstract = {We compute the unique nonzero cohomology group of a generic $G^0$- linearized locally free $\{\cal O\}$-module, where $G^ 0$ is the identity component of a complex classical Lie supergroup $G$ and $P\hookrightarrow G^0$ is an arbitrary parabolic subsupergroup. In particular we prove that for $G\ne \{\Bbb P\}(m), S\{\Bbb P\}(m)$ this cohomology group is an irreducible $G^0$-module. As an application we generalize the character formula of typical irreducible $G^0$-modules to a natural class of atypical modules arising in this way.},
author = {Penkov, Ivan, Serganova, Vera},
journal = {Annales de l'institut Fourier},
keywords = {cohomology group of quotient of classical Lie supergroup},
language = {eng},
number = {4},
pages = {845-873},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules},
url = {http://eudml.org/doc/74859},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Penkov, Ivan
AU - Serganova, Vera
TI - Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 4
SP - 845
EP - 873
AB - We compute the unique nonzero cohomology group of a generic $G^0$- linearized locally free ${\cal O}$-module, where $G^ 0$ is the identity component of a complex classical Lie supergroup $G$ and $P\hookrightarrow G^0$ is an arbitrary parabolic subsupergroup. In particular we prove that for $G\ne {\Bbb P}(m), S{\Bbb P}(m)$ this cohomology group is an irreducible $G^0$-module. As an application we generalize the character formula of typical irreducible $G^0$-modules to a natural class of atypical modules arising in this way.
LA - eng
KW - cohomology group of quotient of classical Lie supergroup
UR - http://eudml.org/doc/74859
ER -

References

top
  1. [1] J. N. BERNSTEIN, D. A. LEITES, A character formula for irreducible finite dimensional modules over the Lie superalgebras of series gl and sl, C. R. Acad. Sci. Bulg., 33 (1980), 1049-1051 (in Russian). Zbl0457.17002
  2. [2] M. DEMAZURE, Une démonstration algébrique d'un théorème de Bott, Inv. Math., 5 (1968), 349-356. Zbl0204.54102MR37 #4831
  3. [3] V. G. KAC, Lie superalgebras, Adv. Math., 26 (1977), 8-96. Zbl0366.17012MR58 #5803
  4. [4] V. G. KAC, Characters of typical representations of classical Lie superalgebras, Comm. Alg., 5 (8) (1977), 889-897. Zbl0359.17010MR56 #3075
  5. [5] V. G. KAC, Representations of classical Lie superalgebras, Lect. Notes in Math., 676 (1978), 597-626. Zbl0388.17002MR80f:17006
  6. [6] V. G. KAC, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. USA, 81 (1984), 645-647. Zbl0532.17008MR85j:17025
  7. [7] Yu I. MANIN, Gauge fields and complex geometry, Nauka, Moscow, 1984 (in Russian). 
  8. [8] D. A. LEITES, Character formulas for irreducible finite dimensional modules of simple Lie superalgebras, Funct. Anal. i ego Pril. 14 (1980), N° 2, 35-38 (in Russian). Zbl0431.17005MR82d:17004
  9. [9] D. A. LEITES, Lie superalgebras, Sovr. Probl. Mat. 25, VINITI, Moscow, 1984, 3-47 (in Russian). Zbl0567.17003
  10. [10] D. A. LEITES (ed), Seminar on supermanifolds N° 8, Stockholm University preprint, 1986. 
  11. [11] I. B. PENKOV, Characters of typical irreducible finite dimensional q(m)-modules, Funct. Anal. i Pril., 20, N° 1 (1986), 37-45 (in Russian). Zbl0595.17003MR87j:17033
  12. [12] I. B. PENKOV, Borel-Weil-Bott theory for classical Lie supergroups, Sovr. Probl. Mat. 32, VINITI, Moscow, (1988), 71-124 (in Russian). Zbl0734.17004MR90f:22018
  13. [13] I. B. PENKOV, Geometric representation theory of complex classical Lie supergroups, Asterisque, to appear. 
  14. [13'] I. B. PENKOV, Classical Lie supergroups and Lie superalgebras and their representations, Preprint of Institut Fourier, 1988 (contains a preliminary version of Chapters 0, 1, 2 of [13]). 
  15. [14] A. N. SERGEEV, The centre of enveloping algebra for Lie superalgebra Q (n, ℂ), Lett. Math. Phys., 7 (1983), 177-179. Zbl0539.17003MR85i:17004
  16. [15] A. N. SERGEEV, The tensor algebra of the standard representation as a module over the Lie superalgebra gl(m/n) and Q (n), Mat. Sbornik, 123 (165) (1984), N° 3, 422-430 (in Russian). Zbl0573.17002MR85h:17010
  17. [16] J. THIERRY-MIEG, Irreducible representations of the basic classical Lie superalgebras SU(m/n)/U(1), OSP(m/2n), D(2/1,∞), G(3), F(4), Group Theoretical Methods in Physics, Lect. Notes in Phys., 201 (1984), 94-98. 
  18. [17] J. THIERRY-MIEG, Tables of irreducible representations of the basic classical Lie superalgebras, Preprint of Groupe d'astrophysique relativiste CNRS, Observatoire de Meudon, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.