Cohomology of for classical complex Lie supergroups and characters of some atypical -modules
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 4, page 845-873
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPenkov, Ivan, and Serganova, Vera. "Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules." Annales de l'institut Fourier 39.4 (1989): 845-873. <http://eudml.org/doc/74859>.
@article{Penkov1989,
abstract = {We compute the unique nonzero cohomology group of a generic $G^0$- linearized locally free $\{\cal O\}$-module, where $G^ 0$ is the identity component of a complex classical Lie supergroup $G$ and $P\hookrightarrow G^0$ is an arbitrary parabolic subsupergroup. In particular we prove that for $G\ne \{\Bbb P\}(m), S\{\Bbb P\}(m)$ this cohomology group is an irreducible $G^0$-module. As an application we generalize the character formula of typical irreducible $G^0$-modules to a natural class of atypical modules arising in this way.},
author = {Penkov, Ivan, Serganova, Vera},
journal = {Annales de l'institut Fourier},
keywords = {cohomology group of quotient of classical Lie supergroup},
language = {eng},
number = {4},
pages = {845-873},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules},
url = {http://eudml.org/doc/74859},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Penkov, Ivan
AU - Serganova, Vera
TI - Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 4
SP - 845
EP - 873
AB - We compute the unique nonzero cohomology group of a generic $G^0$- linearized locally free ${\cal O}$-module, where $G^ 0$ is the identity component of a complex classical Lie supergroup $G$ and $P\hookrightarrow G^0$ is an arbitrary parabolic subsupergroup. In particular we prove that for $G\ne {\Bbb P}(m), S{\Bbb P}(m)$ this cohomology group is an irreducible $G^0$-module. As an application we generalize the character formula of typical irreducible $G^0$-modules to a natural class of atypical modules arising in this way.
LA - eng
KW - cohomology group of quotient of classical Lie supergroup
UR - http://eudml.org/doc/74859
ER -
References
top- [1] J. N. BERNSTEIN, D. A. LEITES, A character formula for irreducible finite dimensional modules over the Lie superalgebras of series gl and sl, C. R. Acad. Sci. Bulg., 33 (1980), 1049-1051 (in Russian). Zbl0457.17002
- [2] M. DEMAZURE, Une démonstration algébrique d'un théorème de Bott, Inv. Math., 5 (1968), 349-356. Zbl0204.54102MR37 #4831
- [3] V. G. KAC, Lie superalgebras, Adv. Math., 26 (1977), 8-96. Zbl0366.17012MR58 #5803
- [4] V. G. KAC, Characters of typical representations of classical Lie superalgebras, Comm. Alg., 5 (8) (1977), 889-897. Zbl0359.17010MR56 #3075
- [5] V. G. KAC, Representations of classical Lie superalgebras, Lect. Notes in Math., 676 (1978), 597-626. Zbl0388.17002MR80f:17006
- [6] V. G. KAC, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. USA, 81 (1984), 645-647. Zbl0532.17008MR85j:17025
- [7] Yu I. MANIN, Gauge fields and complex geometry, Nauka, Moscow, 1984 (in Russian).
- [8] D. A. LEITES, Character formulas for irreducible finite dimensional modules of simple Lie superalgebras, Funct. Anal. i ego Pril. 14 (1980), N° 2, 35-38 (in Russian). Zbl0431.17005MR82d:17004
- [9] D. A. LEITES, Lie superalgebras, Sovr. Probl. Mat. 25, VINITI, Moscow, 1984, 3-47 (in Russian). Zbl0567.17003
- [10] D. A. LEITES (ed), Seminar on supermanifolds N° 8, Stockholm University preprint, 1986.
- [11] I. B. PENKOV, Characters of typical irreducible finite dimensional q(m)-modules, Funct. Anal. i Pril., 20, N° 1 (1986), 37-45 (in Russian). Zbl0595.17003MR87j:17033
- [12] I. B. PENKOV, Borel-Weil-Bott theory for classical Lie supergroups, Sovr. Probl. Mat. 32, VINITI, Moscow, (1988), 71-124 (in Russian). Zbl0734.17004MR90f:22018
- [13] I. B. PENKOV, Geometric representation theory of complex classical Lie supergroups, Asterisque, to appear.
- [13'] I. B. PENKOV, Classical Lie supergroups and Lie superalgebras and their representations, Preprint of Institut Fourier, 1988 (contains a preliminary version of Chapters 0, 1, 2 of [13]).
- [14] A. N. SERGEEV, The centre of enveloping algebra for Lie superalgebra Q (n, ℂ), Lett. Math. Phys., 7 (1983), 177-179. Zbl0539.17003MR85i:17004
- [15] A. N. SERGEEV, The tensor algebra of the standard representation as a module over the Lie superalgebra gl(m/n) and Q (n), Mat. Sbornik, 123 (165) (1984), N° 3, 422-430 (in Russian). Zbl0573.17002MR85h:17010
- [16] J. THIERRY-MIEG, Irreducible representations of the basic classical Lie superalgebras SU(m/n)/U(1), OSP(m/2n), D(2/1,∞), G(3), F(4), Group Theoretical Methods in Physics, Lect. Notes in Phys., 201 (1984), 94-98.
- [17] J. THIERRY-MIEG, Tables of irreducible representations of the basic classical Lie superalgebras, Preprint of Groupe d'astrophysique relativiste CNRS, Observatoire de Meudon, 1985.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.