Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 1, page 213-236
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBonckaert, Patrick. "Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability." Annales de l'institut Fourier 40.1 (1990): 213-236. <http://eudml.org/doc/74872>.
@article{Bonckaert1990,
abstract = {We give sufficient conditions for the conjugacy of two diffeomorphisms coinciding on a common invariant submanifold V and with equal normal derivative; moreover we obtain that the homeomorphism h realizing this conjugacy satisfies additional inequalities. These inequalities, implying also the existence of the normal derivative of h along V, serve to extend this conjugacy towards regions where moduli of stability are present.},
author = {Bonckaert, Patrick},
journal = {Annales de l'institut Fourier},
keywords = {conjugacy; diffeomorphisms; moduli of stability},
language = {eng},
number = {1},
pages = {213-236},
publisher = {Association des Annales de l'Institut Fourier},
title = {Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability},
url = {http://eudml.org/doc/74872},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Bonckaert, Patrick
TI - Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 213
EP - 236
AB - We give sufficient conditions for the conjugacy of two diffeomorphisms coinciding on a common invariant submanifold V and with equal normal derivative; moreover we obtain that the homeomorphism h realizing this conjugacy satisfies additional inequalities. These inequalities, implying also the existence of the normal derivative of h along V, serve to extend this conjugacy towards regions where moduli of stability are present.
LA - eng
KW - conjugacy; diffeomorphisms; moduli of stability
UR - http://eudml.org/doc/74872
ER -
References
top- [1] M. BERGER, P. GAUDUCHON and E. MAZET, Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics 194, Springer-Verlag, Berlin-Heidelberg-New York (1971). Zbl0223.53034MR43 #8025
- [2] P. BONCKAERT, F. DUMORTIER and S. STRIEN, Singularities of Vector fields on R3 determined by their first nonvanishing jet, Ergodic Theory and Dynamical Systems, 9 (1989) 281-308. Zbl0661.58005
- [3] H. BRAUNER, Differentialgeometrie, Viewig, Braunschweig, 1981. Zbl0466.53001MR82h:53001
- [4] M.W. HIRSCH, Differential Topology, Springer, New York, 1976. Zbl0356.57001MR56 #6669
- [5] M.W. HIRSCH, C. PUGH and M. SHUB, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0355.58009MR58 #18595
- [6] J.L. KELLEY, General Topology, Van Nostrand, New York, 1955. Zbl0066.16604MR16,1136c
- [7] R. LABARCA and M.J. PACIFICO, Morse-Smale vector fields on 4-manifolds with boundary, Dynamical Systems and bifurcation theory, Pitman series 160, Longman, 1987. Zbl0632.58023MR89e:58066
- [8] S. LANG, Differential Manifolds, Addison-Wesley, Reading Massachusetts, 1972. Zbl0239.58001MR55 #4241
- [9] W. de MELO, Moduli of Stability of two-dimensional diffeomorphisms, Topology 19 (1980), 9-21. Zbl0447.58025MR81c:58047
- [10] W. de MELO and F. DUMORTIER, A type of moduli for saddle connections of planar diffeomorphisms, J. of Diff. Eq. 75 (1988), 88-102. Zbl0672.58036MR90a:58137
- [11] J. PALIS, A differentiable invariant of topological conjugacies and moduli of stability, Astérisque, 51 (1978), 335-346. Zbl0396.58015MR58 #13189
- [12] M. SPIVAK, Differential Geometry, Volume I, Publish or Peris Inc., Berkeley, 1979.
- [13] S. van STRIEN, Normal hyperbolicity and linearisability, Invent. Math., 87 (1987), 377-384. Zbl0619.58033MR88f:58088
- [14] S. van STRIEN, Linearisation along invariant manifolds and determination of degenerate singularies of vector fields in R3, Delft Progr. Rep., 12 (1988), 107-124. Zbl0825.58029MR90d:58117
- [15] S. van STRIEN, Smooth linearization of hyperbolic fixed points without resonace conditions, preprint. Zbl0726.58039
- [16] S. van STRIEN and G. TAVARES DA SANTOS, Moduli of stability for germs of homogeneous vector fields on R3, J. of Diff. Eq., 69 (1987), 63-84. Zbl0633.58031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.