Composition of some singular Fourier integral operators and estimates for restricted X -ray transforms

Allan Greenleaf; Gunther Uhlmann

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 2, page 443-466
  • ISSN: 0373-0956

Abstract

top
We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations C ( T * X 0 ) × ( T * Y 0 ) . These canonical relations, which arise naturally in integral geometry, are such that π : C T * Y is a Whitney fold and ρ : C T * X is a blow-down mapping. If A I m ( C ) , B I m ' ( C t ) , then B A I m + m ' , 0 ( Δ , Λ ) a class of pseudodifferential operators with singular symbols. From this follows L 2 boundedness of A with a loss of 1/4 derivative.

How to cite

top

Greenleaf, Allan, and Uhlmann, Gunther. "Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms." Annales de l'institut Fourier 40.2 (1990): 443-466. <http://eudml.org/doc/74884>.

@article{Greenleaf1990,
abstract = {We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations $C\subset (T^*X\setminus 0)\times (T^*Y\setminus 0)$. These canonical relations, which arise naturally in integral geometry, are such that $\pi $ : $C\rightarrow T^*Y$ is a Whitney fold and $\rho $ : $C\rightarrow T^*X$ is a blow-down mapping. If $A\in I^ m(C)$, $B\in I^\{m^\{\prime \}\}(C^ t)$, then $BA\in I^\{m+m^\{\prime \},0\}(\Delta ,\Lambda )$ a class of pseudodifferential operators with singular symbols. From this follows $L^ 2$ boundedness of $A$ with a loss of 1/4 derivative.},
author = {Greenleaf, Allan, Uhlmann, Gunther},
journal = {Annales de l'institut Fourier},
keywords = {Fourier integral operators},
language = {eng},
number = {2},
pages = {443-466},
publisher = {Association des Annales de l'Institut Fourier},
title = {Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms},
url = {http://eudml.org/doc/74884},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Greenleaf, Allan
AU - Uhlmann, Gunther
TI - Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 2
SP - 443
EP - 466
AB - We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations $C\subset (T^*X\setminus 0)\times (T^*Y\setminus 0)$. These canonical relations, which arise naturally in integral geometry, are such that $\pi $ : $C\rightarrow T^*Y$ is a Whitney fold and $\rho $ : $C\rightarrow T^*X$ is a blow-down mapping. If $A\in I^ m(C)$, $B\in I^{m^{\prime }}(C^ t)$, then $BA\in I^{m+m^{\prime },0}(\Delta ,\Lambda )$ a class of pseudodifferential operators with singular symbols. From this follows $L^ 2$ boundedness of $A$ with a loss of 1/4 derivative.
LA - eng
KW - Fourier integral operators
UR - http://eudml.org/doc/74884
ER -

References

top
  1. [1] J. ANTONIANO and G. UHLMANN, A functional calculus for a class of pseudodifferential operators with singular symbols, Proc. Symp. Pure Math, 43 (1985), 5-16. Zbl0578.35090MR87e:47069
  2. [2] A. BESSE, Manifolds all of Whose Geodesics are Closed, Springer-Verlag, New York, 1978. Zbl0387.53010MR80c:53044
  3. [3] L. BOUTET DE MONVEL, Hypoelliptic equations with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), 585-639. Zbl0294.35020MR51 #6498
  4. [4] A. P. CALDERÓN and R. VAILLANCOURT, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. USA, 69 (1972), 1185-1187. Zbl0244.35074MR45 #7532
  5. [5] M. CHRIST, Estimates for the k-plane transform, Indiana Univ. Math. Jour., 33 (1984), 891-910. Zbl0597.44003MR86k:44004
  6. [6] S. DRURY, Lp estimates for the X-ray transform, Illinois Jour. Math., 27 (1983), 125-129. Zbl0514.44001MR85b:44004
  7. [7] S. DRURY, Generalizations of Riesz potentials and Lp estimates for certain k-plane transforms, Illinois Jour. Math., 28 (1984), 495-512. Zbl0552.43005MR85h:44004
  8. [8] J. J. DUISTERMAAT, Fourier Integral Operators, Courant Institute, New York, 1973. Zbl0272.47028MR56 #9600
  9. [9] J. J. DUISTERMAAT and V. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
  10. [10] C. FEFFERMAN and E. M. STEIN, Hp spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  11. [11] I. M. GELFAND, M. I. GRAEV and N. Ya. VILENKIN, Generalized Functions, V, Academic Press, New York, 1966. Zbl0144.17202
  12. [12] A. GREENLEAF and G. UHLMANN, Nonlocal inversion formulas for the X-ray transform, Duke Math. Jour., 58 (1989), 205-240. Zbl0668.44004MR91b:58251
  13. [13] A. GREENLEAF and G. UHLMANN, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Jour. Func. Anal., 89 (1990), 202-232. Zbl0717.44001MR91i:58146
  14. [14] V. GUILLEMIN, On some results of Gelfand in integral geometry, Proc. Symp. Pure Math., 43 (1985), 149-155. Zbl0576.58028MR87d:58137
  15. [15] V. GUILLEMIN, Cosmology in (2 + 1)-dimensions, Cyclic Models, and Deformations, Princeton University Press, Princeton, 1989. Zbl0697.53003
  16. [16] V. GUILLEMIN and G. UHLMANN, Oscillatory integrals with singular symbols, Duke Math. Jour., 48 (1981), 251-267. Zbl0462.58030MR82d:58065
  17. [17] S. HELGASON, The Radon Transform, Birkhaüser, Boston, 1980. Zbl0453.43011
  18. [18] L. HÖRMANDER, Fourier integral operators, I, Acta Math., 127 (1971), 79-183. Zbl0212.46601MR52 #9299
  19. [19] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, IV, Springer-Verlag, New York, 1985. Zbl0601.35001
  20. [20] R. MELROSE, Equivalence of glancing hypersurfaces, Inv. Math., 37 (1976), 165-191. Zbl0354.53033MR55 #9173
  21. [21] R. MELROSE, Equivalence of glancing hypersurfaces, II, Math. Ann., 255 (1981), 159-198. Zbl0472.53045MR84d:58084
  22. [22] R. MELROSE, Transformation of boundary problems, Acta Math., 147 (1981), 149-236. Zbl0492.58023MR83f:58073
  23. [23] R. MELROSE, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, Jour. d'Analyse Math., 44 (1984-1985), 134-182. Zbl0599.35139MR87e:58199
  24. [24] R. MELROSE, Marked lagrangians, notes of lectures at Max Planck Institut, 1987, paper in preparation. 
  25. [25] R. MELROSE and M. TAYLOR, Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle, Adv. in Math., 55 (1985), 242-315. Zbl0591.58034MR86m:35095
  26. [26] R. MELROSE and G. UHLMANN, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), 482-519. Zbl0396.58006MR81d:58052
  27. [27] D. OBERLIN and E. M. STEIN, Mapping Properties of the Radon transform, Indiana Univ. Math. Jour., 31 (1982), 641-650. Zbl0548.44003MR84a:44002
  28. [28] K. T. SMITH and D. C. SOLMON, Lower dimensional integrability of L2 functions, Jour. Math. Anal. Appl., 51 (1975), 539-549. Zbl0308.28004MR51 #13668
  29. [29] R. STRICHARTZ, The Hardy space H1 on manifolds and submanifolds, Canad. Jour. Math., 24 (1972), 915-925. Zbl0238.58008MR47 #5585
  30. [30] R. STRICHARTZ, Lp estimates for Radon transforms in euclidian and non-euclidian spaces, Duke Math. Jour., 48 (1981), 699-737. Zbl0477.44003MR86k:43008
  31. [31] H.-T. WANG, Lp estimates for the restricted X-ray transform, Ph. D. thesis, Univ. of Rochester, June 1987. 
  32. [32] A. WEINSTEIN, On Maslov's quantization condition, in Fourier Integral Operators and Partial Differential Equations, J. Chazarain, ed., Springer-Verlag, 1975. Zbl0348.58016MR55 #9178

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.