Composition of some singular Fourier integral operators and estimates for restricted -ray transforms
Allan Greenleaf; Gunther Uhlmann
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 2, page 443-466
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGreenleaf, Allan, and Uhlmann, Gunther. "Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms." Annales de l'institut Fourier 40.2 (1990): 443-466. <http://eudml.org/doc/74884>.
@article{Greenleaf1990,
abstract = {We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations $C\subset (T^*X\setminus 0)\times (T^*Y\setminus 0)$. These canonical relations, which arise naturally in integral geometry, are such that $\pi $ : $C\rightarrow T^*Y$ is a Whitney fold and $\rho $ : $C\rightarrow T^*X$ is a blow-down mapping. If $A\in I^ m(C)$, $B\in I^\{m^\{\prime \}\}(C^ t)$, then $BA\in I^\{m+m^\{\prime \},0\}(\Delta ,\Lambda )$ a class of pseudodifferential operators with singular symbols. From this follows $L^ 2$ boundedness of $A$ with a loss of 1/4 derivative.},
author = {Greenleaf, Allan, Uhlmann, Gunther},
journal = {Annales de l'institut Fourier},
keywords = {Fourier integral operators},
language = {eng},
number = {2},
pages = {443-466},
publisher = {Association des Annales de l'Institut Fourier},
title = {Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms},
url = {http://eudml.org/doc/74884},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Greenleaf, Allan
AU - Uhlmann, Gunther
TI - Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 2
SP - 443
EP - 466
AB - We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations $C\subset (T^*X\setminus 0)\times (T^*Y\setminus 0)$. These canonical relations, which arise naturally in integral geometry, are such that $\pi $ : $C\rightarrow T^*Y$ is a Whitney fold and $\rho $ : $C\rightarrow T^*X$ is a blow-down mapping. If $A\in I^ m(C)$, $B\in I^{m^{\prime }}(C^ t)$, then $BA\in I^{m+m^{\prime },0}(\Delta ,\Lambda )$ a class of pseudodifferential operators with singular symbols. From this follows $L^ 2$ boundedness of $A$ with a loss of 1/4 derivative.
LA - eng
KW - Fourier integral operators
UR - http://eudml.org/doc/74884
ER -
References
top- [1] J. ANTONIANO and G. UHLMANN, A functional calculus for a class of pseudodifferential operators with singular symbols, Proc. Symp. Pure Math, 43 (1985), 5-16. Zbl0578.35090MR87e:47069
- [2] A. BESSE, Manifolds all of Whose Geodesics are Closed, Springer-Verlag, New York, 1978. Zbl0387.53010MR80c:53044
- [3] L. BOUTET DE MONVEL, Hypoelliptic equations with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), 585-639. Zbl0294.35020MR51 #6498
- [4] A. P. CALDERÓN and R. VAILLANCOURT, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. USA, 69 (1972), 1185-1187. Zbl0244.35074MR45 #7532
- [5] M. CHRIST, Estimates for the k-plane transform, Indiana Univ. Math. Jour., 33 (1984), 891-910. Zbl0597.44003MR86k:44004
- [6] S. DRURY, Lp estimates for the X-ray transform, Illinois Jour. Math., 27 (1983), 125-129. Zbl0514.44001MR85b:44004
- [7] S. DRURY, Generalizations of Riesz potentials and Lp estimates for certain k-plane transforms, Illinois Jour. Math., 28 (1984), 495-512. Zbl0552.43005MR85h:44004
- [8] J. J. DUISTERMAAT, Fourier Integral Operators, Courant Institute, New York, 1973. Zbl0272.47028MR56 #9600
- [9] J. J. DUISTERMAAT and V. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
- [10] C. FEFFERMAN and E. M. STEIN, Hp spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
- [11] I. M. GELFAND, M. I. GRAEV and N. Ya. VILENKIN, Generalized Functions, V, Academic Press, New York, 1966. Zbl0144.17202
- [12] A. GREENLEAF and G. UHLMANN, Nonlocal inversion formulas for the X-ray transform, Duke Math. Jour., 58 (1989), 205-240. Zbl0668.44004MR91b:58251
- [13] A. GREENLEAF and G. UHLMANN, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Jour. Func. Anal., 89 (1990), 202-232. Zbl0717.44001MR91i:58146
- [14] V. GUILLEMIN, On some results of Gelfand in integral geometry, Proc. Symp. Pure Math., 43 (1985), 149-155. Zbl0576.58028MR87d:58137
- [15] V. GUILLEMIN, Cosmology in (2 + 1)-dimensions, Cyclic Models, and Deformations, Princeton University Press, Princeton, 1989. Zbl0697.53003
- [16] V. GUILLEMIN and G. UHLMANN, Oscillatory integrals with singular symbols, Duke Math. Jour., 48 (1981), 251-267. Zbl0462.58030MR82d:58065
- [17] S. HELGASON, The Radon Transform, Birkhaüser, Boston, 1980. Zbl0453.43011
- [18] L. HÖRMANDER, Fourier integral operators, I, Acta Math., 127 (1971), 79-183. Zbl0212.46601MR52 #9299
- [19] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, IV, Springer-Verlag, New York, 1985. Zbl0601.35001
- [20] R. MELROSE, Equivalence of glancing hypersurfaces, Inv. Math., 37 (1976), 165-191. Zbl0354.53033MR55 #9173
- [21] R. MELROSE, Equivalence of glancing hypersurfaces, II, Math. Ann., 255 (1981), 159-198. Zbl0472.53045MR84d:58084
- [22] R. MELROSE, Transformation of boundary problems, Acta Math., 147 (1981), 149-236. Zbl0492.58023MR83f:58073
- [23] R. MELROSE, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, Jour. d'Analyse Math., 44 (1984-1985), 134-182. Zbl0599.35139MR87e:58199
- [24] R. MELROSE, Marked lagrangians, notes of lectures at Max Planck Institut, 1987, paper in preparation.
- [25] R. MELROSE and M. TAYLOR, Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle, Adv. in Math., 55 (1985), 242-315. Zbl0591.58034MR86m:35095
- [26] R. MELROSE and G. UHLMANN, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), 482-519. Zbl0396.58006MR81d:58052
- [27] D. OBERLIN and E. M. STEIN, Mapping Properties of the Radon transform, Indiana Univ. Math. Jour., 31 (1982), 641-650. Zbl0548.44003MR84a:44002
- [28] K. T. SMITH and D. C. SOLMON, Lower dimensional integrability of L2 functions, Jour. Math. Anal. Appl., 51 (1975), 539-549. Zbl0308.28004MR51 #13668
- [29] R. STRICHARTZ, The Hardy space H1 on manifolds and submanifolds, Canad. Jour. Math., 24 (1972), 915-925. Zbl0238.58008MR47 #5585
- [30] R. STRICHARTZ, Lp estimates for Radon transforms in euclidian and non-euclidian spaces, Duke Math. Jour., 48 (1981), 699-737. Zbl0477.44003MR86k:43008
- [31] H.-T. WANG, Lp estimates for the restricted X-ray transform, Ph. D. thesis, Univ. of Rochester, June 1987.
- [32] A. WEINSTEIN, On Maslov's quantization condition, in Fourier Integral Operators and Partial Differential Equations, J. Chazarain, ed., Springer-Verlag, 1975. Zbl0348.58016MR55 #9178
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.