The asymptotics of the Ray-Singer analytic torsion of the symmetric powers of a positive vector bundle
Jean-Michel Bismut; E. Vasserot
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 4, page 835-848
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBismut, Jean-Michel, and Vasserot, E.. "The asymptotics of the Ray-Singer analytic torsion of the symmetric powers of a positive vector bundle." Annales de l'institut Fourier 40.4 (1990): 835-848. <http://eudml.org/doc/74901>.
@article{Bismut1990,
abstract = {The purpose of this paper is to calculate the asymptotics of the Ray-Singer analytic torsion associated with the $p$-th symmetric power of a holomorphic Hermitian positive vector bundle when $p$ tends to $+\infty $. We thus extend our previous results on positive line bundles.},
author = {Bismut, Jean-Michel, Vasserot, E.},
journal = {Annales de l'institut Fourier},
keywords = {asymptotics; Ray-Singer analytic torsion; holomorphic Hermitian positive vector bundle},
language = {eng},
number = {4},
pages = {835-848},
publisher = {Association des Annales de l'Institut Fourier},
title = {The asymptotics of the Ray-Singer analytic torsion of the symmetric powers of a positive vector bundle},
url = {http://eudml.org/doc/74901},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Bismut, Jean-Michel
AU - Vasserot, E.
TI - The asymptotics of the Ray-Singer analytic torsion of the symmetric powers of a positive vector bundle
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 4
SP - 835
EP - 848
AB - The purpose of this paper is to calculate the asymptotics of the Ray-Singer analytic torsion associated with the $p$-th symmetric power of a holomorphic Hermitian positive vector bundle when $p$ tends to $+\infty $. We thus extend our previous results on positive line bundles.
LA - eng
KW - asymptotics; Ray-Singer analytic torsion; holomorphic Hermitian positive vector bundle
UR - http://eudml.org/doc/74901
ER -
References
top- [B1] J. M. BISMUT, The index Theorem for families of Dirac operators: two heat equation proofs, Invent. Math., 83 (1987), 91-151. Zbl0592.58047MR87g:58117
- [B2] J. M. BISMUT, Demailly's asymptotic Morse inequalities: a heat equation proof, J. Funct. Anal., 72 (1987), 263-278. Zbl0649.58030MR88j:58131
- [BGS1] J. M. BISMUT, H. GILLET, C. SOULÉ, Analytic torsion and holomorphic determinant bundles. II, Comm. Math. Phys., 115 (1988), 79-126. Zbl0651.32017MR89g:58192b
- [BGS2] J. M. BISMUT, H. GILLET, C. SOULÉ, Analytic torsion and holomorphic determinant bundles. III, Comm. Math. Phys., 115 (1988), 301-351. Zbl0651.32017MR89g:58192c
- [BV] J. M. BISMUT, E. VASSEROT. The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys., 125 (1989), 355-367. Zbl0687.32023MR91c:58141
- [De] J. P. DEMAILLY, Vanishing theorems for tensor powers of a positive vector bundle. In Geometry and Analysis, T. Sunada, ed., pp. 86-106, Lecture Notes in Math. Berlin-Heidelberg-New York, Springer-Verlag, 1988. Zbl0651.32019MR89k:32058
- [Ge] E. GETZLER, Inégalités asymptotiques de Demailly pour les fibrés vectoriels, C.R. Acad. Sci., Série I. Math., 304 (1987), 475-478. Zbl0614.32022MR88j:32040
- [GrH] P. GRIFFITHS, J. HARRIS, Principles of algebraic geometry, New York, Wiley, 1978. Zbl0408.14001MR80b:14001
- [K] S. KOBAYASHI, Differential geometry of complex vector bundles, Iwanami Shoten and Princeton University Press, 1987. Zbl0708.53002MR89e:53100
- [LP] J. LE POTIER, Théorèmes d'annulation en cohomologie, C.R. Acad. Sci. Paris, Série A, 276 (1976), 535-537. Zbl0249.32021MR49 #7482
- [Q] D. QUILLEN, Superconnections and the Chern character, Topology, 24 (1985), 89-95. Zbl0569.58030MR86m:58010
- [RS] D. B. RAY, I. M. SINGER, Analytic torsion for complex manifolds, Ann. of Math., 98 (1973), 154-177. Zbl0267.32014MR52 #4344
- [Se] R. T. SEELEY, Complex powers of an elliptic operator, Proc. Symp. Pure and Appl. Math., Vol. 10, 288-307, Providence, Am. Math. Soc., (1967). Zbl0159.15504MR38 #6220
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.