Infinitesimal rigidity of Euclidean submanifolds
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 4, page 939-949
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [A] C. B. ALLENDOERFER, Rigidity for spaces of class greater than one, Amer. J. Math., 61 (1939), 633-644. Zbl0021.15803MR1,28gJFM65.0802.01
- [CD] M. do CARMO and M. DAJCZER, Conformal rigidity, Amer. J. of Math., 109 (1987), 963-985. Zbl0631.53043MR89e:53016
- [DG] M. DAJCZER and D. GROMOLL, Real Kaehler submanifolds and uniqueness of the Gauss map, J. Diff. Geometry, 22 (1985), 13-28. Zbl0587.53051MR87g:53088b
- [DR1] M. DAJCZER and L. RODRIGUEZ, Rigidity of real Kaehler submanifolds, Duke Math. J., 53 (1986), 211-220. Zbl0599.53005MR87g:53089
- [DR2] M. DAJCZER and L. RODRIGUEZ, Hypersurfaces which make a constant angle, in "Differential Geometry", Longman Sc. & Tech., Harlow, 1990. Zbl0723.53004
- [GR] R. A. GOLDSTEIN and P.J. RYAN, Infinitesimal rigidity of submanifolds, J. Diff. Geometry, 10 (1975), 49-60. Zbl0302.53029MR51 #1675
- [S] R. SACKSTEDER, On hypersurfaces with no negative sectional curvature, Amer. J. Math., 82 (1960), 609-630. Zbl0194.22701MR22 #7087
- [Y] K. YANO, Infinitesimal variations of submanifolds, Kodai Math. J., 1 (1978), 30-44. Zbl0388.53017MR58 #7504