Distribution function inequalities for the density of the area integral
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 1, page 137-171
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBanuelos, R., and Moore, C. N.. "Distribution function inequalities for the density of the area integral." Annales de l'institut Fourier 41.1 (1991): 137-171. <http://eudml.org/doc/74911>.
@article{Banuelos1991,
abstract = {We prove good-$\lambda $ inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of $\{\{\bf R\}\}^ 2_+$.},
author = {Banuelos, R., Moore, C. N.},
journal = {Annales de l'institut Fourier},
keywords = {distribution function inequalities; local time; good- inequalities; area integral; nontangential; maximal function; maximal density; iterated logarithm for harmonic functions},
language = {eng},
number = {1},
pages = {137-171},
publisher = {Association des Annales de l'Institut Fourier},
title = {Distribution function inequalities for the density of the area integral},
url = {http://eudml.org/doc/74911},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Banuelos, R.
AU - Moore, C. N.
TI - Distribution function inequalities for the density of the area integral
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 1
SP - 137
EP - 171
AB - We prove good-$\lambda $ inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of ${{\bf R}}^ 2_+$.
LA - eng
KW - distribution function inequalities; local time; good- inequalities; area integral; nontangential; maximal function; maximal density; iterated logarithm for harmonic functions
UR - http://eudml.org/doc/74911
ER -
References
top- [1] R. BAÑUELOS, I. KLEMES and C.N. MOORE, An analogue of Kolmogorov's law of the iterated logarithm for harmonic functions, Duke Math. J., 57 (1988), 37-68. Zbl0666.31002MR89k:42019
- [2] R. BAÑUELOS and C.N. MOORE, Sharp estimates for the nontangential maximal function and the Lusin area function in Lipschitz domains, Trans. Amer. Math. Soc., 312 (1989) 641-662. Zbl0675.42016MR90i:42030
- [3] R. BAÑUELOS and C.N. MOORE, Laws of the iterated logarithm, sharp good-λ inequalities and Lp estimates for caloric and harmonic functions, Indiana Univ. Math. J., 38 (1989), 315-344. Zbl0718.31002
- [4] M. BARLOW and M. YOR, (Semi) Martingale inequalities and local times, A. Wahrch. Verw. Gebiete, 55 (1981), 237-354. Zbl0451.60050MR82h:60092
- [5] M. BARLOW and M. YOR, Semi-martingale inequalities via the Garsia-Rodemich-Rumsey Lemma, and applications to local times, J. Funct. Anal., 49,2 (1989), 198-229. Zbl0505.60054MR84f:60073
- [6] R. BASS, Séminaire de Probabilités XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). Zbl0616.60046
- [7] J. BROSSARD, Densité de l'intégrale d'aire dans Rn+1+ et limites non tangentielles, Invent. Math., 93 (1988), 297-308. Zbl0655.31004MR89h:31008
- [8] J. BROSSARD and L. CHEVALIER, Classe L log L et densité de l'intégrale d'aire dans Rn+1+, Ann. of Math., 128 (1988), 603-618. Zbl0666.60071MR90a:42013
- [9] D.L. BURKHOLDER and R.F. GUNDY, Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544. Zbl0219.31009MR49 #5309
- [10] S.Y.A. CHANG, J.M. WILSON and T.H. WOLFF, Some weighted norm inequalities involving the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. Zbl0575.42025MR87d:42027
- [11] B.E.J. DAHLBERG, Weighted norm inequalities for the Lusin area integral and nontangential maximal functions for harmonic functions in Lipschitz domains, Studia Math., 47 (1980), 297-314. Zbl0449.31002MR82f:31003
- [12] B. DAVIS, On the Barlow-Yor inequalities for local time, Séminaire de Probabilitiés XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). Zbl0617.60041MR89h:60122
- [13] J.L. DOOB, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York/Berlin, 1984. Zbl0549.31001MR85k:31001
- [14] R.F. GUNDY, The density of the area integral, Conference on Harmonic Analysis in Honor of A. Zygmund, Beckner, W., Calderón, A P., Fefferman, R., and Jones, P., editors, Wadsworth, Belmont, California, 1983. MR85k:42048
- [15] R.F. GUNDY, Some topics in probability and analysis, BMS, #70 (1989). Zbl0673.60050MR91c:60059
- [16] R.F. GUNDY and M.L. SILVERSTEIN, The density of the area integral in Rn+1+, Ann. Inst. Fourier (Grenoble), 35,1 (1985), 215-224. Zbl0544.31012MR86e:26012
- [17] IKEDA and WATANABE, Stochastic differential equations and diffusion processes, North Holland Kodansha, 1981. Zbl0495.60005MR84b:60080
- [18] D. JERISON and C. KENIG, Boundary value problems on Lipschitz domains, MAA Studies in Math., 23 (1982), 1-68. Zbl0529.31007MR85f:35057
- [19] H. KESTEN, An iterated law for local time, Duke Math. J., 32 (1965), 447-456. Zbl0132.12701MR31 #2751
- [20] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl0207.13501MR44 #7280
- [21] J.O. STRÖMBERG, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 28 (1979), 511-544. Zbl0429.46016MR81f:42021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.