Distribution function inequalities for the density of the area integral

R. Banuelos; C. N. Moore

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 1, page 137-171
  • ISSN: 0373-0956

Abstract

top
We prove good- λ inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of R + 2 .

How to cite

top

Banuelos, R., and Moore, C. N.. "Distribution function inequalities for the density of the area integral." Annales de l'institut Fourier 41.1 (1991): 137-171. <http://eudml.org/doc/74911>.

@article{Banuelos1991,
abstract = {We prove good-$\lambda $ inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of $\{\{\bf R\}\}^ 2_+$.},
author = {Banuelos, R., Moore, C. N.},
journal = {Annales de l'institut Fourier},
keywords = {distribution function inequalities; local time; good- inequalities; area integral; nontangential; maximal function; maximal density; iterated logarithm for harmonic functions},
language = {eng},
number = {1},
pages = {137-171},
publisher = {Association des Annales de l'Institut Fourier},
title = {Distribution function inequalities for the density of the area integral},
url = {http://eudml.org/doc/74911},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Banuelos, R.
AU - Moore, C. N.
TI - Distribution function inequalities for the density of the area integral
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 1
SP - 137
EP - 171
AB - We prove good-$\lambda $ inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of ${{\bf R}}^ 2_+$.
LA - eng
KW - distribution function inequalities; local time; good- inequalities; area integral; nontangential; maximal function; maximal density; iterated logarithm for harmonic functions
UR - http://eudml.org/doc/74911
ER -

References

top
  1. [1] R. BAÑUELOS, I. KLEMES and C.N. MOORE, An analogue of Kolmogorov's law of the iterated logarithm for harmonic functions, Duke Math. J., 57 (1988), 37-68. Zbl0666.31002MR89k:42019
  2. [2] R. BAÑUELOS and C.N. MOORE, Sharp estimates for the nontangential maximal function and the Lusin area function in Lipschitz domains, Trans. Amer. Math. Soc., 312 (1989) 641-662. Zbl0675.42016MR90i:42030
  3. [3] R. BAÑUELOS and C.N. MOORE, Laws of the iterated logarithm, sharp good-λ inequalities and Lp estimates for caloric and harmonic functions, Indiana Univ. Math. J., 38 (1989), 315-344. Zbl0718.31002
  4. [4] M. BARLOW and M. YOR, (Semi) Martingale inequalities and local times, A. Wahrch. Verw. Gebiete, 55 (1981), 237-354. Zbl0451.60050MR82h:60092
  5. [5] M. BARLOW and M. YOR, Semi-martingale inequalities via the Garsia-Rodemich-Rumsey Lemma, and applications to local times, J. Funct. Anal., 49,2 (1989), 198-229. Zbl0505.60054MR84f:60073
  6. [6] R. BASS, Séminaire de Probabilités XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). Zbl0616.60046
  7. [7] J. BROSSARD, Densité de l'intégrale d'aire dans Rn+1+ et limites non tangentielles, Invent. Math., 93 (1988), 297-308. Zbl0655.31004MR89h:31008
  8. [8] J. BROSSARD and L. CHEVALIER, Classe L log L et densité de l'intégrale d'aire dans Rn+1+, Ann. of Math., 128 (1988), 603-618. Zbl0666.60071MR90a:42013
  9. [9] D.L. BURKHOLDER and R.F. GUNDY, Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544. Zbl0219.31009MR49 #5309
  10. [10] S.Y.A. CHANG, J.M. WILSON and T.H. WOLFF, Some weighted norm inequalities involving the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. Zbl0575.42025MR87d:42027
  11. [11] B.E.J. DAHLBERG, Weighted norm inequalities for the Lusin area integral and nontangential maximal functions for harmonic functions in Lipschitz domains, Studia Math., 47 (1980), 297-314. Zbl0449.31002MR82f:31003
  12. [12] B. DAVIS, On the Barlow-Yor inequalities for local time, Séminaire de Probabilitiés XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). Zbl0617.60041MR89h:60122
  13. [13] J.L. DOOB, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York/Berlin, 1984. Zbl0549.31001MR85k:31001
  14. [14] R.F. GUNDY, The density of the area integral, Conference on Harmonic Analysis in Honor of A. Zygmund, Beckner, W., Calderón, A P., Fefferman, R., and Jones, P., editors, Wadsworth, Belmont, California, 1983. MR85k:42048
  15. [15] R.F. GUNDY, Some topics in probability and analysis, BMS, #70 (1989). Zbl0673.60050MR91c:60059
  16. [16] R.F. GUNDY and M.L. SILVERSTEIN, The density of the area integral in Rn+1+, Ann. Inst. Fourier (Grenoble), 35,1 (1985), 215-224. Zbl0544.31012MR86e:26012
  17. [17] IKEDA and WATANABE, Stochastic differential equations and diffusion processes, North Holland Kodansha, 1981. Zbl0495.60005MR84b:60080
  18. [18] D. JERISON and C. KENIG, Boundary value problems on Lipschitz domains, MAA Studies in Math., 23 (1982), 1-68. Zbl0529.31007MR85f:35057
  19. [19] H. KESTEN, An iterated law for local time, Duke Math. J., 32 (1965), 447-456. Zbl0132.12701MR31 #2751
  20. [20] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl0207.13501MR44 #7280
  21. [21] J.O. STRÖMBERG, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 28 (1979), 511-544. Zbl0429.46016MR81f:42021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.