Metric properties of eigenfunctions of the Laplace operator on manifolds

Nikolai S. Nadirashvili

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 1, page 259-265
  • ISSN: 0373-0956

Abstract

top
On a two-dimensional compact real analytic Riemannian manifold we estimate the volume of the set on which the eigenfunction of the Laplace-Beltrami operator is positive.On an n -dimensional compact smooth Riemannian manifold, we estimate the relation between supremum and infimum of an eigenfunction of the Laplace operator.

How to cite

top

Nadirashvili, Nikolai S.. "Metric properties of eigenfunctions of the Laplace operator on manifolds." Annales de l'institut Fourier 41.1 (1991): 259-265. <http://eudml.org/doc/74916>.

@article{Nadirashvili1991,
abstract = {On a two-dimensional compact real analytic Riemannian manifold we estimate the volume of the set on which the eigenfunction of the Laplace-Beltrami operator is positive.On an $n$-dimensional compact smooth Riemannian manifold, we estimate the relation between supremum and infimum of an eigenfunction of the Laplace operator.},
author = {Nadirashvili, Nikolai S.},
journal = {Annales de l'institut Fourier},
keywords = {nodal set; eigenfunction; Laplace-Beltrami operator},
language = {eng},
number = {1},
pages = {259-265},
publisher = {Association des Annales de l'Institut Fourier},
title = {Metric properties of eigenfunctions of the Laplace operator on manifolds},
url = {http://eudml.org/doc/74916},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Nadirashvili, Nikolai S.
TI - Metric properties of eigenfunctions of the Laplace operator on manifolds
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 1
SP - 259
EP - 265
AB - On a two-dimensional compact real analytic Riemannian manifold we estimate the volume of the set on which the eigenfunction of the Laplace-Beltrami operator is positive.On an $n$-dimensional compact smooth Riemannian manifold, we estimate the relation between supremum and infimum of an eigenfunction of the Laplace operator.
LA - eng
KW - nodal set; eigenfunction; Laplace-Beltrami operator
UR - http://eudml.org/doc/74916
ER -

References

top
  1. [1] J.-P. LIONS, E. MAGENES, Problèmes aux limites non homogènes et application, vol. 1, Dunod, Paris, 1968. Zbl0165.10801
  2. [2] L. BERS, F. JOHN, M. SCHECHTER, Partial differential equations, Providence, R.I, 1974. Zbl0143.32403
  3. [3] J. BRÜNING, Uber Knoten von Eigenfunnktionen des Laplace-Beltrami Operators, Math. Z., 158 (1978), 15-21. Zbl0349.58012
  4. [4] H. DONNELLY, C. FEFFERMAN, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93 (1988), 161-183. Zbl0659.58047MR89m:58207
  5. [5] D. GILBARG, N.S. TRUDINGER, Elliptic partial differential equations of second order, Second Edition, Springer, 1983. Zbl0562.35001MR86c:35035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.