On equivariant harmonic maps defined on a Lorentz manifold

Ma Li

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 2, page 511-518
  • ISSN: 0373-0956

Abstract

top
In this paper, we prove by using the minimax principle that there exist infinitely many G -equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.

How to cite

top

Ma Li. "On equivariant harmonic maps defined on a Lorentz manifold." Annales de l'institut Fourier 41.2 (1991): 511-518. <http://eudml.org/doc/74927>.

@article{MaLi1991,
abstract = {In this paper, we prove by using the minimax principle that there exist infinitely many $G$-equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.},
author = {Ma Li},
journal = {Annales de l'institut Fourier},
keywords = {minimax principle},
language = {eng},
number = {2},
pages = {511-518},
publisher = {Association des Annales de l'Institut Fourier},
title = {On equivariant harmonic maps defined on a Lorentz manifold},
url = {http://eudml.org/doc/74927},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Ma Li
TI - On equivariant harmonic maps defined on a Lorentz manifold
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 511
EP - 518
AB - In this paper, we prove by using the minimax principle that there exist infinitely many $G$-equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.
LA - eng
KW - minimax principle
UR - http://eudml.org/doc/74927
ER -

References

top
  1. [E] J. EELLS Jr, Proc 1981 Shanghai-Hefei Symps. Diff. Geom. Diff. Eq., Sci. Press, Beijing, (1984), 55-73. 
  2. [EL] J. EELLS Jr and L. LEMAIRE, Another Report on Harmonic Maps, Bull. London Math. Soc., 20 (1988), 385-524. Zbl0669.58009MR89i:58027
  3. [G] GU CHAO-HAO, On the Two-dimensional Minkowski space, Comm. Pure and Appl. Math., 33 (1980), 727-738. Zbl0475.58005
  4. [M] J. MILNOR, Morse Theory, Princeton, 1963. Zbl0108.10401
  5. [P1] R. S. PALAIS, Lusternik-Schnirelmann theory on Banach Manifold, Topology, 5 (1966), 115-132. Zbl0143.35203MR41 #4584
  6. [P2] R. S. PALAIS, The Principle of Symmetric Criticality, Comm. Math. Phys., 69 (1979), 19-30. Zbl0417.58007MR81c:58026
  7. [V-PS] M. VIGUE-POIRRIER, D. SULLIVAN, The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., 11 (1976), 633-644. Zbl0361.53058MR56 #13269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.