On equivariant harmonic maps defined on a Lorentz manifold
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 2, page 511-518
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMa Li. "On equivariant harmonic maps defined on a Lorentz manifold." Annales de l'institut Fourier 41.2 (1991): 511-518. <http://eudml.org/doc/74927>.
@article{MaLi1991,
abstract = {In this paper, we prove by using the minimax principle that there exist infinitely many $G$-equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.},
author = {Ma Li},
journal = {Annales de l'institut Fourier},
keywords = {minimax principle},
language = {eng},
number = {2},
pages = {511-518},
publisher = {Association des Annales de l'Institut Fourier},
title = {On equivariant harmonic maps defined on a Lorentz manifold},
url = {http://eudml.org/doc/74927},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Ma Li
TI - On equivariant harmonic maps defined on a Lorentz manifold
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 511
EP - 518
AB - In this paper, we prove by using the minimax principle that there exist infinitely many $G$-equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.
LA - eng
KW - minimax principle
UR - http://eudml.org/doc/74927
ER -
References
top- [E] J. EELLS Jr, Proc 1981 Shanghai-Hefei Symps. Diff. Geom. Diff. Eq., Sci. Press, Beijing, (1984), 55-73.
- [EL] J. EELLS Jr and L. LEMAIRE, Another Report on Harmonic Maps, Bull. London Math. Soc., 20 (1988), 385-524. Zbl0669.58009MR89i:58027
- [G] GU CHAO-HAO, On the Two-dimensional Minkowski space, Comm. Pure and Appl. Math., 33 (1980), 727-738. Zbl0475.58005
- [M] J. MILNOR, Morse Theory, Princeton, 1963. Zbl0108.10401
- [P1] R. S. PALAIS, Lusternik-Schnirelmann theory on Banach Manifold, Topology, 5 (1966), 115-132. Zbl0143.35203MR41 #4584
- [P2] R. S. PALAIS, The Principle of Symmetric Criticality, Comm. Math. Phys., 69 (1979), 19-30. Zbl0417.58007MR81c:58026
- [V-PS] M. VIGUE-POIRRIER, D. SULLIVAN, The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., 11 (1976), 633-644. Zbl0361.53058MR56 #13269
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.