Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences

M. Blümlinger; N. Obata

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 3, page 665-678
  • ISSN: 0373-0956

Abstract

top
We are interested in permutations preserving certain distribution properties of sequences. In particular we consider μ -uniformly distributed sequences on a compact metric space X , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of A u t ( N ) leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group 𝒢 . We show that 𝒢 is big in the sense that the Cesàro mean is characterized by its invariance under the Lévy group. As a result, any 𝒢 -invariant positive normalized linear functional on l ( N ) is an extension of Cesàro means. Finally we prove that there exist 𝒢 -invariant extensions of Cesàro mean to all of l ( N ) .

How to cite

top

Blümlinger, M., and Obata, N.. "Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences." Annales de l'institut Fourier 41.3 (1991): 665-678. <http://eudml.org/doc/74933>.

@article{Blümlinger1991,
abstract = {We are interested in permutations preserving certain distribution properties of sequences. In particular we consider $\mu $-uniformly distributed sequences on a compact metric space $X$, 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of $Aut(\{\bf N\})$ leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group $\{\cal G\}$. We show that $\{\cal G\}$ is big in the sense that the Cesàro mean is characterized by its invariance under the Lévy group. As a result, any $\{\cal G\}$ -invariant positive normalized linear functional on $l^ \infty (\{\bf N\})$ is an extension of Cesàro means. Finally we prove that there exist $\{\cal G\}$ -invariant extensions of Cesàro mean to all of $l^ \infty (\{\bf N\})$.},
author = {Blümlinger, M., Obata, N.},
journal = {Annales de l'institut Fourier},
keywords = {densities; uniform distribution; permutation groups; Lévy group; linear functional; invariant extensions of Cesàro mean},
language = {eng},
number = {3},
pages = {665-678},
publisher = {Association des Annales de l'Institut Fourier},
title = {Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences},
url = {http://eudml.org/doc/74933},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Blümlinger, M.
AU - Obata, N.
TI - Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 3
SP - 665
EP - 678
AB - We are interested in permutations preserving certain distribution properties of sequences. In particular we consider $\mu $-uniformly distributed sequences on a compact metric space $X$, 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of $Aut({\bf N})$ leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group ${\cal G}$. We show that ${\cal G}$ is big in the sense that the Cesàro mean is characterized by its invariance under the Lévy group. As a result, any ${\cal G}$ -invariant positive normalized linear functional on $l^ \infty ({\bf N})$ is an extension of Cesàro means. Finally we prove that there exist ${\cal G}$ -invariant extensions of Cesàro mean to all of $l^ \infty ({\bf N})$.
LA - eng
KW - densities; uniform distribution; permutation groups; Lévy group; linear functional; invariant extensions of Cesàro mean
UR - http://eudml.org/doc/74933
ER -

References

top
  1. [C] J. COQUET, Permutations des entiers et répartition des suites, Publ. Math. Orsay (Univ. Paris XI, Orsay), 86-1 (1986), 25-39. Zbl0581.10026MR87h:11011
  2. [K] V.L. KLEE, Jr., Invariant extensions of linear functionals, Pacific J. Math., 14 (1954), 37-46. Zbl0055.10001MR15,631b
  3. [KN] L. KUIPERS, H. NIEDERREITER, Uniform distribution of sequences Wiley, New York, 1974. Zbl0281.10001MR54 #7415
  4. [L] P. LÉVY, Problèms Concretes d'Analyse Fonctionelle, Gauthier-Villars, Paris, 1951. Zbl0043.32302
  5. [O1] N. OBATA, A note on certain permutation groups in the infinite dimensional rotation groups, Nagoya Math. J., 109 (1988), 91-107. Zbl0611.60013MR89c:11020
  6. [O2] N. OBATA, Density of natural numbers and the Lévy group J. Number Theory, 30 (1988), 288-297. Zbl0658.10065MR90e:11027
  7. [P] A. PATERSON, Amenability, A.M.S., Providence, 1988. Zbl0648.43001MR90e:43001
  8. [R] H. RINDLER, Eine Charakterisierung gleichverteilter Folgen, Arch. Math., 32 (1979), 185-188. Zbl0409.10036MR80i:10067
  9. [S] Q. STOUT, On Levi's duality between permutations and convergent series J. London Math. Soc., (2) 34 (1986), 67-80. Zbl0633.40004MR88f:40002

NotesEmbed ?

top

You must be logged in to post comments.