Spectral geometry of semi-algebraic sets

Mikhael Gromov

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 1-2, page 249-274
  • ISSN: 0373-0956

Abstract

top
The spectrum of the Laplace operator on algebraic and semialgebraic subsets A in R N is studied and the number of small eigenvalues is estimated by the degree of A .

How to cite

top

Gromov, Mikhael. "Spectral geometry of semi-algebraic sets." Annales de l'institut Fourier 42.1-2 (1992): 249-274. <http://eudml.org/doc/74953>.

@article{Gromov1992,
abstract = {The spectrum of the Laplace operator on algebraic and semialgebraic subsets $A$ in $\{\bf R\}^N$ is studied and the number of small eigenvalues is estimated by the degree of $A$.},
author = {Gromov, Mikhael},
journal = {Annales de l'institut Fourier},
keywords = {algebraic set; singularities; semianalytic set; Laplace operator; eigenvalues; isoperimetric profile},
language = {eng},
number = {1-2},
pages = {249-274},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spectral geometry of semi-algebraic sets},
url = {http://eudml.org/doc/74953},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Gromov, Mikhael
TI - Spectral geometry of semi-algebraic sets
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 1-2
SP - 249
EP - 274
AB - The spectrum of the Laplace operator on algebraic and semialgebraic subsets $A$ in ${\bf R}^N$ is studied and the number of small eigenvalues is estimated by the degree of $A$.
LA - eng
KW - algebraic set; singularities; semianalytic set; Laplace operator; eigenvalues; isoperimetric profile
UR - http://eudml.org/doc/74953
ER -

References

top
  1. [At] M. ATIYAH, Resolution of singularities and division of distributions, Comm. Pure Appl. Math., 23 (1970), 145-150. Zbl0188.19405MR41 #815
  2. [Ber] I. BERNSTEIN, Moduli over the ring of differential operators, Funct. Anal. and App. 
  3. [BerGel] I. BERNSTEIN, S. GELFAND, Meromorphicity of the function pλ, Funct. Anal and Applic., (Russian), 3-1 (1969), 84-85. 
  4. [Bj] J. BJÖRK, Rings of differential operators, North-Holland Publ. Co. Math. Libr., 21 (1979). Zbl0499.13009MR82g:32013
  5. [Che1] J. CHEEGER, A lower bound for the smallest eigenvalue of the Laplacian, Problem in Analysis, A symposium in honor of Bochner (1970), Princeton, pp 195-199. Zbl0212.44903MR53 #6645
  6. [Che2] J. CHEEGER, On the Hodge theory of Riemannian pseudomanifolds, Proc. Symp. Pure Math., AMS Providence R.I., XXXVI (1980), 91-146. Zbl0461.58002MR83a:58081
  7. [Che3] J. CHEEGER, Spectral geometry of singular Riemannian spaces, J. Diff. Geom., 18-4 (1983), 575-657. Zbl0529.58034MR85d:58083
  8. [Gro1] M. GROMOV, Paul Levy's isoperimetric inequality (1980) Preprint, IHES. 
  9. [Gro2] M. GROMOV, Dimension, non-linear spectra and width, Springer Lecture Notes, 1317 (1988), 132-185. Zbl0664.41019MR90d:58022
  10. [Gro3] M. GROMOV, Entropy, homology and semialgebraic geometry (after Yomdin), Astérisque, Soc. Math. France, 145-146 (1987), 225-241. Zbl0611.58041MR89f:58082
  11. [Gro4] M. GROMOV, Curvature, diameter and Betti numbers, Comm. Math. Helv., 56 (1981), 179-195. Zbl0467.53021MR82k:53062
  12. [Kho] A.G. KHOVANSKII, Fewnomials, Translation of Math. Monographs, V. 88, AMS, 1991. Zbl0728.12002
  13. [Mil] J. MILNOR, On the Betti numbers of real varieties, Proc. Am. Math. Soc., 15 (1964), 275-280. Zbl0123.38302MR28 #4547
  14. [Tho] R. THOM, Sur l'homologie des variétés algébriques réelles. In Differential and Combinatorial Topology. A symposium in honor of M. Morse, Princeton University Press, 1965, pp. 252-265. Zbl0137.42503
  15. [Yom] Y. YOMDIN, Global bounds for the Betti numbers of regular fibers of differential mappings, Topology, 24-2 (1985), 145-152. Zbl0566.57014MR87a:58030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.