Multiparameter singular integrals and maximal functions

Fulvio Ricci; Elias M. Stein

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 3, page 637-670
  • ISSN: 0373-0956

Abstract

top
We prove L p -boundedness for a class of singular integral operators and maximal operators associated with a general k -parameter family of dilations on R n . This class includes homogeneous operators defined by kernels supported on homogeneous manifolds. For singular integrals, only certain “minimal” cancellation is required of the kernels, depending on the given set of dilations.

How to cite

top

Ricci, Fulvio, and Stein, Elias M.. "Multiparameter singular integrals and maximal functions." Annales de l'institut Fourier 42.3 (1992): 637-670. <http://eudml.org/doc/74968>.

@article{Ricci1992,
abstract = {We prove $L^ p$-boundedness for a class of singular integral operators and maximal operators associated with a general $k$-parameter family of dilations on $\{\bf R\}^ n$. This class includes homogeneous operators defined by kernels supported on homogeneous manifolds. For singular integrals, only certain “minimal” cancellation is required of the kernels, depending on the given set of dilations.},
author = {Ricci, Fulvio, Stein, Elias M.},
journal = {Annales de l'institut Fourier},
keywords = {maximal functions; Calderón-Zygmund kernels; product domains; singular integral operators; maximal operators; homogeneous manifolds},
language = {eng},
number = {3},
pages = {637-670},
publisher = {Association des Annales de l'Institut Fourier},
title = {Multiparameter singular integrals and maximal functions},
url = {http://eudml.org/doc/74968},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Ricci, Fulvio
AU - Stein, Elias M.
TI - Multiparameter singular integrals and maximal functions
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 637
EP - 670
AB - We prove $L^ p$-boundedness for a class of singular integral operators and maximal operators associated with a general $k$-parameter family of dilations on ${\bf R}^ n$. This class includes homogeneous operators defined by kernels supported on homogeneous manifolds. For singular integrals, only certain “minimal” cancellation is required of the kernels, depending on the given set of dilations.
LA - eng
KW - maximal functions; Calderón-Zygmund kernels; product domains; singular integral operators; maximal operators; homogeneous manifolds
UR - http://eudml.org/doc/74968
ER -

References

top
  1. [1] A. CARBERY, Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem, Ann. Inst. Fourier, Grenoble, 38-1 (1988), 157-168. Zbl0607.42009MR89h:42026
  2. [2] A. CARBERY, A. SEEGER, Hp- and Lp- variants of multiparameter Calderón-Zygmund theory, preprint. Zbl0770.42010
  3. [3] H. CARLSSON, P. SJÖGREN, Estimates for maximal functions along hypersurfaces, Ark. För Math., 25 (1987), 1-14. Zbl0629.42010MR89a:42027
  4. [4] H. CARLSSON, P. SJÖGREN, J.-O. STRÖMBERG, Multiparameter maximal functions along dilation-invariant hypersurfaces, Trans. Amer. Math. Soc., 292 (1985), 335-343. Zbl0578.42018MR86k:42031
  5. [5] M. CHRIST, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math., 122 (1985), 575-596. Zbl0593.43011MR87f:42039a
  6. [6] M. CHRIST, The strong maximal function on a nilpotent group, to appear in Trans. Amer. Math. Soc. Zbl0765.43002
  7. [7] A. CÓRDOBA, R. FEFFERMAN, On the equivalence between the boundedness of certain classes of maximal operators and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci. USA, 74 (1977), 423-425. Zbl0342.42003MR55 #6096
  8. [8] J. DUOANDIKOETXEA, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier, Grenoble, 36-4 (1986), 185-206. Zbl0568.42011MR88f:42037
  9. [9] J. DUOANDIKOETXEA, J.L. RUBIO DE FRANCIA, Maximal and singular integral operators via Fourier transform estimates, Inv. Math., 84 (1986), 541-561. Zbl0568.42012MR87f:42046
  10. [10] R. FEFFERMAN, Calderón-Zygmund theory for product domains. Hp spaces, Proc. Nat. Acad. Sci. USA, 83 (1986), 840-843. Zbl0602.42023MR87h:42032
  11. [11] R. FEFFERMAN, E.M. STEIN, Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143. Zbl0517.42024MR84d:42023
  12. [12] J.L. JOURNÉ, Calderón-Zygmund operators on products spaces, Rev. Mat. Ibero-Amer., 3 (1985), 55-91. Zbl0634.42015MR88d:42028
  13. [13] A. NAGEL, E.M. STEIN, S. WAINGER, Differentiation in lacunary directions, Proc. Nat. Acad. Sci., USA, 75 (1978), 1060-1062. Zbl0391.42015MR57 #6349
  14. [14] A. NAGEL, S. WAINGER, L2-boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math., 99 (1977), 761-785. Zbl0374.44003MR56 #9192
  15. [15] J. PIPHER, Journé's covering lemma and its extension to higher dimensions, Duke Math. J., 53 (1986), 683-690. Zbl0645.42018MR88a:42019
  16. [16] F. RICCI, E.M. STEIN, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal., 78 (1988), 56-84. Zbl0645.42019MR89g:42030
  17. [17] E.M. STEIN, Oscillatory integrals in Fourier analysis, in Bejing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, 1986. Zbl0618.42006MR88g:42022
  18. [18] E.M. STEIN, S. WAINGER, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978), 1239-1295. Zbl0393.42010MR80k:42023
  19. [19] R. STRICHARTZ, Singular integrals supported on submanifolds, Studia Math., 74 (1982), 137-151. Zbl0501.43007MR85c:42019
  20. [20] J.-O. STRÖMBERG, Dissertation (1976, Mittag-Leffler Inst., Djursholm, Sweden. 
  21. [21] J.T. VANCE, Lp-boundedness of the multiple Hilbert transform along a surface, Pac. J. Math., 108 (1983), 221-241. Zbl0462.44001MR85h:44010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.