Multiparameter singular integrals and maximal functions
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 3, page 637-670
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRicci, Fulvio, and Stein, Elias M.. "Multiparameter singular integrals and maximal functions." Annales de l'institut Fourier 42.3 (1992): 637-670. <http://eudml.org/doc/74968>.
@article{Ricci1992,
abstract = {We prove $L^ p$-boundedness for a class of singular integral operators and maximal operators associated with a general $k$-parameter family of dilations on $\{\bf R\}^ n$. This class includes homogeneous operators defined by kernels supported on homogeneous manifolds. For singular integrals, only certain “minimal” cancellation is required of the kernels, depending on the given set of dilations.},
author = {Ricci, Fulvio, Stein, Elias M.},
journal = {Annales de l'institut Fourier},
keywords = {maximal functions; Calderón-Zygmund kernels; product domains; singular integral operators; maximal operators; homogeneous manifolds},
language = {eng},
number = {3},
pages = {637-670},
publisher = {Association des Annales de l'Institut Fourier},
title = {Multiparameter singular integrals and maximal functions},
url = {http://eudml.org/doc/74968},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Ricci, Fulvio
AU - Stein, Elias M.
TI - Multiparameter singular integrals and maximal functions
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 637
EP - 670
AB - We prove $L^ p$-boundedness for a class of singular integral operators and maximal operators associated with a general $k$-parameter family of dilations on ${\bf R}^ n$. This class includes homogeneous operators defined by kernels supported on homogeneous manifolds. For singular integrals, only certain “minimal” cancellation is required of the kernels, depending on the given set of dilations.
LA - eng
KW - maximal functions; Calderón-Zygmund kernels; product domains; singular integral operators; maximal operators; homogeneous manifolds
UR - http://eudml.org/doc/74968
ER -
References
top- [1] A. CARBERY, Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem, Ann. Inst. Fourier, Grenoble, 38-1 (1988), 157-168. Zbl0607.42009MR89h:42026
- [2] A. CARBERY, A. SEEGER, Hp- and Lp- variants of multiparameter Calderón-Zygmund theory, preprint. Zbl0770.42010
- [3] H. CARLSSON, P. SJÖGREN, Estimates for maximal functions along hypersurfaces, Ark. För Math., 25 (1987), 1-14. Zbl0629.42010MR89a:42027
- [4] H. CARLSSON, P. SJÖGREN, J.-O. STRÖMBERG, Multiparameter maximal functions along dilation-invariant hypersurfaces, Trans. Amer. Math. Soc., 292 (1985), 335-343. Zbl0578.42018MR86k:42031
- [5] M. CHRIST, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math., 122 (1985), 575-596. Zbl0593.43011MR87f:42039a
- [6] M. CHRIST, The strong maximal function on a nilpotent group, to appear in Trans. Amer. Math. Soc. Zbl0765.43002
- [7] A. CÓRDOBA, R. FEFFERMAN, On the equivalence between the boundedness of certain classes of maximal operators and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci. USA, 74 (1977), 423-425. Zbl0342.42003MR55 #6096
- [8] J. DUOANDIKOETXEA, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier, Grenoble, 36-4 (1986), 185-206. Zbl0568.42011MR88f:42037
- [9] J. DUOANDIKOETXEA, J.L. RUBIO DE FRANCIA, Maximal and singular integral operators via Fourier transform estimates, Inv. Math., 84 (1986), 541-561. Zbl0568.42012MR87f:42046
- [10] R. FEFFERMAN, Calderón-Zygmund theory for product domains. Hp spaces, Proc. Nat. Acad. Sci. USA, 83 (1986), 840-843. Zbl0602.42023MR87h:42032
- [11] R. FEFFERMAN, E.M. STEIN, Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143. Zbl0517.42024MR84d:42023
- [12] J.L. JOURNÉ, Calderón-Zygmund operators on products spaces, Rev. Mat. Ibero-Amer., 3 (1985), 55-91. Zbl0634.42015MR88d:42028
- [13] A. NAGEL, E.M. STEIN, S. WAINGER, Differentiation in lacunary directions, Proc. Nat. Acad. Sci., USA, 75 (1978), 1060-1062. Zbl0391.42015MR57 #6349
- [14] A. NAGEL, S. WAINGER, L2-boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math., 99 (1977), 761-785. Zbl0374.44003MR56 #9192
- [15] J. PIPHER, Journé's covering lemma and its extension to higher dimensions, Duke Math. J., 53 (1986), 683-690. Zbl0645.42018MR88a:42019
- [16] F. RICCI, E.M. STEIN, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal., 78 (1988), 56-84. Zbl0645.42019MR89g:42030
- [17] E.M. STEIN, Oscillatory integrals in Fourier analysis, in Bejing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, 1986. Zbl0618.42006MR88g:42022
- [18] E.M. STEIN, S. WAINGER, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978), 1239-1295. Zbl0393.42010MR80k:42023
- [19] R. STRICHARTZ, Singular integrals supported on submanifolds, Studia Math., 74 (1982), 137-151. Zbl0501.43007MR85c:42019
- [20] J.-O. STRÖMBERG, Dissertation (1976, Mittag-Leffler Inst., Djursholm, Sweden.
- [21] J.T. VANCE, Lp-boundedness of the multiple Hilbert transform along a surface, Pac. J. Math., 108 (1983), 221-241. Zbl0462.44001MR85h:44010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.