Harmonic analysis of spherical functions on
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 3, page 671-694
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBenyamini, Y., and Weit, Yitzhak. "Harmonic analysis of spherical functions on $SU(1,1)$." Annales de l'institut Fourier 42.3 (1992): 671-694. <http://eudml.org/doc/74969>.
@article{Benyamini1992,
abstract = {Denote by $L^ 1(K\backslash G/K)$ the algebra of spherical integrable functions on $SU(1,1)$, with convolution as multiplication. This is a commutative semi-simple algebra, and we use its Gelfand transform to study the ideals in $L^ 1(K\backslash G/K)$. In particular, we are interested in conditions on an ideal that ensure that it is all of $L^ 1(K\backslash G/K)$, or that it is $L_ 0^ 1(K\backslash G/K)$. Spherical functions on $SU(1,1)$ are naturally represented as radial functions on the unit disk $D$ in the complex plane. Using this representation, these results are applied to characterize harmonic and holomorphic functions on $D$.},
author = {Benyamini, Y., Weit, Yitzhak},
journal = {Annales de l'institut Fourier},
keywords = {spherical functions on ; algebra of spherical integrable functions; convolution; semi-simple algebra; Gelfand transform; ideals; radial functions; holomorphic functions},
language = {eng},
number = {3},
pages = {671-694},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic analysis of spherical functions on $SU(1,1)$},
url = {http://eudml.org/doc/74969},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Benyamini, Y.
AU - Weit, Yitzhak
TI - Harmonic analysis of spherical functions on $SU(1,1)$
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 671
EP - 694
AB - Denote by $L^ 1(K\backslash G/K)$ the algebra of spherical integrable functions on $SU(1,1)$, with convolution as multiplication. This is a commutative semi-simple algebra, and we use its Gelfand transform to study the ideals in $L^ 1(K\backslash G/K)$. In particular, we are interested in conditions on an ideal that ensure that it is all of $L^ 1(K\backslash G/K)$, or that it is $L_ 0^ 1(K\backslash G/K)$. Spherical functions on $SU(1,1)$ are naturally represented as radial functions on the unit disk $D$ in the complex plane. Using this representation, these results are applied to characterize harmonic and holomorphic functions on $D$.
LA - eng
KW - spherical functions on ; algebra of spherical integrable functions; convolution; semi-simple algebra; Gelfand transform; ideals; radial functions; holomorphic functions
UR - http://eudml.org/doc/74969
ER -
References
top- [A] M.G. AGRANOVSKII, Tests for holomorphy in symmetric domains, Siberian Math. J., 22 (1981), 171-179. Zbl0475.32002
- [BY] C.A. BERENSTEIN and P. YANG, An overdetermined Neuman problem in the unit disk, Advances in Math., 44 (1982), 1-17. Zbl0488.35063MR84e:35107
- [BZ] C.A. BERENSTEIN and L. ZALCMAN, Pomepin's problem on spaces of constant curvature, J. Analyse Math., 30 (1976), 113-130. Zbl0332.35033MR55 #11172
- [CD] G. CHOQUET and J. DENY, Sur l'équation de convolution µ = µ * σ, C.R. Acad. Sc. Paris, 250 (1960), 779-801. Zbl0093.12802MR22 #9808
- [EM1] L. EHRENPREIS and F.I. MAUTNER, Some properties of the Fourier transform on semi-simple Lie groups I, Ann. of Math., 61 (1955), 406-439. Zbl0066.35701MR16,1017b
- [EM2] L. EHRENPREIS and F.I. MAUTNER, Some properties of the Fourier transform on semi-simple Lie groups III, Trans. Amer. Math. Soc., 90 (1959), 431-484. Zbl0086.09904MR21 #1541
- [Fo] S.R. FOGUEL, On iterates of convolutions, Proc. Amer. Math. Soc., 47 (1975), 368-370. Zbl0299.43004MR51 #11012
- [FW] S.R. FOGUEL and B. WEISS, On convex power series of conservative Markov operators, Proc. Amer. Math. Soc., 38 (1973), 325-330. Zbl0268.47014MR47 #2030
- [Fu1] H. FURSTENBERG, A Poisson formula for semi-simple groups, Ann. of Math., 77 (1963), 335-386. Zbl0192.12704MR26 #3820
- [Fu2] H. FURSTENBERG, Boundaries of Riemannian symmetric spaces, in Symmetric Spaces, Marcel Dekker Inc., New-York, 1972 (W.M. Boothby and G.L. Weiss, Editors), 359-377. Zbl0241.22028MR55 #10969
- [G] V.P. GURARII, Harmonic analysis in spaces with weights, Trans. Moscow Math. Soc., 35 (1979), 21-75. Zbl0425.43007MR58 #17684
- [H] H. HEDENMALM, On the primary ideal structure at inifinity for analytic Beurling algebras, Ark. Mat., 23 (1985), 129-158. Zbl0575.46045MR87d:46056
- [Ho] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, New Jersy, 1962. Zbl0117.34001MR24 #A2844
- [K] B.I. KORENBLUM, A generalization of Wiener's Tauberian Theorem and harmonic analysis of rapidly increasing functions, (Russian), Trudy Moskov. Mat. Obš, 7 (1958), 121-148.
- [KT] Y. KATZNELSON and L. TZAFRIRI, On power-bounded operators, J. Func. Anal., 68 (1986), 313-328. Zbl0611.47005MR88e:47006
- [L] S. LANG, SL2(R), Addison-Wesley, Reading, Mass, 1975.
- [RW] T. RAMSEY and Y. WEIT, Ergodic and mixing properties of measures on locally compact Abelian groups, Proc. Amer. Math. Soc., 92 (1984), 519-520. Zbl0562.43001MR86b:43014
- [S] M. SUGIURA, Unitary Representations and Harmonic Analysis, an Introduction, North-Holland, 1975. Zbl0344.22001MR58 #16977
- [T] E.C. TITCHMARSH, Theory of Functions, 2nd ed., Oxford University Press, 1939. Zbl0022.14602JFM65.0302.01
- [Z] L. ZALCMAN, Analyticity and the Pompeiu Problem, Arch. Rat. Mech. Anal., 47 (1972), 237-254. Zbl0251.30047MR50 #582
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.