On the characteristic power series of the U operator

Fernando Q. Gouvêa; Barry Mazur

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 2, page 301-312
  • ISSN: 0373-0956

Abstract

top
We show that the coefficients of the characteristic power series of Atkin’s U operator acting on overconvergent p -adic modular forms of weight k vary p -adically continuously as functions of k . Are they in fact Iwasawa functions of k ?

How to cite

top

Gouvêa, Fernando Q., and Mazur, Barry. "On the characteristic power series of the U operator." Annales de l'institut Fourier 43.2 (1993): 301-312. <http://eudml.org/doc/74996>.

@article{Gouvêa1993,
abstract = {We show that the coefficients of the characteristic power series of Atkin’s U operator acting on overconvergent $p$-adic modular forms of weight $k$ vary $p$-adically continuously as functions of $k$. Are they in fact Iwasawa functions of $k$ ?},
author = {Gouvêa, Fernando Q., Mazur, Barry},
journal = {Annales de l'institut Fourier},
keywords = {-adic modular forms; Atkin’s operator; characteristic power series; Iwasawa functions; congruence conditions},
language = {eng},
number = {2},
pages = {301-312},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the characteristic power series of the U operator},
url = {http://eudml.org/doc/74996},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Gouvêa, Fernando Q.
AU - Mazur, Barry
TI - On the characteristic power series of the U operator
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 2
SP - 301
EP - 312
AB - We show that the coefficients of the characteristic power series of Atkin’s U operator acting on overconvergent $p$-adic modular forms of weight $k$ vary $p$-adically continuously as functions of $k$. Are they in fact Iwasawa functions of $k$ ?
LA - eng
KW - -adic modular forms; Atkin’s operator; characteristic power series; Iwasawa functions; congruence conditions
UR - http://eudml.org/doc/74996
ER -

References

top
  1. [Dwo] B. DWORK, On the zeta function of a hypersurface, Publ. Math. I. H. E. S., 12 (1962), 5-68. Zbl0173.48601MR28 #3039
  2. [GM] F. Q. GOUVÊA and B. MAZUR, Families of modular eigenforms, Mathematics of Computation, 58 (1992), 793-806. Zbl0773.11030MR93d:11049
  3. [Gou] F. Q. GOUVÊA, Continuity properties of p-adic modular forms, to appear in the Proceedings of the Workshop on Elliptic Curves and Related Topics held in St. Adèle, Québec, February, 1992. Zbl0829.11026
  4. [Gou2] F. Q. GOUVÊA, Arithmetic of p-adic modular forms, Lecture Notes in Mathematics, vol. 1304, Springer-Verlag, Berlin, Heidelberg, New York, 1988. Zbl0641.10024MR91e:11056
  5. [Kat] N. M. KATZ, p-adic properties of modular schemes and modular forms, Modular Forms in One Variable III (SLN 350) (Berlin, Heidelberg, New York) (W. Kuijk and Jean-Pierre Serre, eds.), Springer-Verlag, 1973. Zbl0271.10033MR56 #5434
  6. [Lan] S. LANG, Cyclotomic fields I and II, Springer-Verlag, Berlin, Heidelberg, New York, 1989. 
  7. [Mon] P. MONSKY, Formal cohomology : III : Fixed point theorems, Ann. of Math., (2), 93 (1971), 315-343. Zbl0213.47501MR48 #296
  8. [Ser] J.-P. SERRE, Endomorphismes complètement continus des espaces de Banach p-adiques, Publ. Math. I.H.E.S., 12 (1962), 69-85. Zbl0104.33601MR26 #1733
  9. [Ser] J.-P. SERRE, Formes modulaires et fonctions zêta p-adiques, Modular Forms in One Variable III (SLN 350) (Berlin, Heidelberg, New York) (W. Kuijk and Jean-Pierre Serre, eds.), Springer-Verlag, 1973. Zbl0277.12014MR53 #7949a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.