Block distribution in random strings
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 2, page 539-549
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGrabner, Peter J.. "Block distribution in random strings." Annales de l'institut Fourier 43.2 (1993): 539-549. <http://eudml.org/doc/75009>.
@article{Grabner1993,
abstract = {For almost all infinite binary sequences of Bernoulli trials $(p,q)$ the frequency of blocks of length $k(N)$ in the first $N$ terms tends asymptotically to the probability of the blocks, if $k(N)$ increases like $\{\rm log\}_\{\{1\over p\}\} N - \{\rm log\}_\{\{1\over p\}\} N-\psi (N)$ (for $p\le q$) where $\psi (N)$ tends to $+\infty $. This generalizes a result due to P. Flajolet, P. Kirschenhofer and R.F. Tichy concerning the case $p=q=\{1\over 2\}$.},
author = {Grabner, Peter J.},
journal = {Annales de l'institut Fourier},
keywords = {coin tossing; uniform distribution; Kolmogoroff's 0-1-law; theory of correlation polynomials of strings},
language = {eng},
number = {2},
pages = {539-549},
publisher = {Association des Annales de l'Institut Fourier},
title = {Block distribution in random strings},
url = {http://eudml.org/doc/75009},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Grabner, Peter J.
TI - Block distribution in random strings
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 2
SP - 539
EP - 549
AB - For almost all infinite binary sequences of Bernoulli trials $(p,q)$ the frequency of blocks of length $k(N)$ in the first $N$ terms tends asymptotically to the probability of the blocks, if $k(N)$ increases like ${\rm log}_{{1\over p}} N - {\rm log}_{{1\over p}} N-\psi (N)$ (for $p\le q$) where $\psi (N)$ tends to $+\infty $. This generalizes a result due to P. Flajolet, P. Kirschenhofer and R.F. Tichy concerning the case $p=q={1\over 2}$.
LA - eng
KW - coin tossing; uniform distribution; Kolmogoroff's 0-1-law; theory of correlation polynomials of strings
UR - http://eudml.org/doc/75009
ER -
References
top- [Fe] W. FELLER, An Introduction to Probability Theory and Its Applications, J. Wiley, New York, 1965.
- [FKT] P. FLAJOLET, P. KIRSCHENHOFER and R.F. TICHY, Deviations from Uniformity in Random Strings, Probab. Th. Rel. Fields, vol 80 (1988), 139-150. Zbl0638.68058MR90a:11087
- [Gr] K. GRILL, A Note on Randomness, Stat. and Probab. Letters, to appear. Zbl0809.60038
- [GO] L. GUIBAS and A.M. ODLYZKO, String Overlaps, Pattern Matching and Non-transitive Games, J. Comb. Th., Ser A, vol 30 (1981), 183-208. Zbl0454.68109
- [Hl] E. HLAWKA, Theorie der Gleichverteilung, Bibliographisches Institut, Mannheim, 1979. Zbl0406.10001MR80j:10057
- [KN] L. KUIPERS and H. NIEDERREITER, Uniform Distribution of Sequences, J. Wiley, New York, 1974. Zbl0281.10001MR54 #7415
- [Od] A.M. ODLYZKO, Enumeration of Strings, in Combinatorial Algorithms on Words, A. Apostolico and Z. Galil eds., Springer, Berlin, Heidelberg New York, 1984.
- [Wa] P. WALTERS, An Introduction to Ergodic Theory, Springer Verlag, New York, 1982. Zbl0475.28009MR84e:28017
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.