On the complex analytic Gel'fand-Fuks cohomology of open Riemann surfaces

Nariya Kawazumi

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 3, page 655-712
  • ISSN: 0373-0956

Abstract

top
The continuous cohomology theory of the Lie algebra L ( M ) of complex analytic vector fields on an open Riemann surface M is studied. We show that the cohomology group with coefficients in the L ( M ) -module of germs of complex analytic tensor fields on the product space M n decomposes into the global part derived from the homology of M and the local part coming from the coefficients.

How to cite

top

Kawazumi, Nariya. "On the complex analytic Gel'fand-Fuks cohomology of open Riemann surfaces." Annales de l'institut Fourier 43.3 (1993): 655-712. <http://eudml.org/doc/75015>.

@article{Kawazumi1993,
abstract = {The continuous cohomology theory of the Lie algebra $L(M)$ of complex analytic vector fields on an open Riemann surface $M$ is studied. We show that the cohomology group with coefficients in the $L(M)$-module of germs of complex analytic tensor fields on the product space $M^n$ decomposes into the global part derived from the homology of $M$ and the local part coming from the coefficients.},
author = {Kawazumi, Nariya},
journal = {Annales de l'institut Fourier},
keywords = {Gel'fand-Fuks cohomology; spaces of holomorphic functions; complex analytic vector fields; Riemann surface},
language = {eng},
number = {3},
pages = {655-712},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the complex analytic Gel'fand-Fuks cohomology of open Riemann surfaces},
url = {http://eudml.org/doc/75015},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Kawazumi, Nariya
TI - On the complex analytic Gel'fand-Fuks cohomology of open Riemann surfaces
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 3
SP - 655
EP - 712
AB - The continuous cohomology theory of the Lie algebra $L(M)$ of complex analytic vector fields on an open Riemann surface $M$ is studied. We show that the cohomology group with coefficients in the $L(M)$-module of germs of complex analytic tensor fields on the product space $M^n$ decomposes into the global part derived from the homology of $M$ and the local part coming from the coefficients.
LA - eng
KW - Gel'fand-Fuks cohomology; spaces of holomorphic functions; complex analytic vector fields; Riemann surface
UR - http://eudml.org/doc/75015
ER -

References

top
  1. [A] V.I. ARNOL'D, The cohomology ring of the colored braid group, Math. notes (Mat. Zametki), 5 (1969), 138-140. Zbl0277.55002MR39 #3529
  2. [ADKP] E. ARBARELLO, C. DECONTINI, V.G. KAC, and C. PROCESI, Moduli spaces of curves and representation theory, Commun. Math. Phys., 117 (1988), 1-36. Zbl0647.17010MR89i:14019
  3. [B] G.E. BREDON, Sheaf theory, McGraw-Hill, 1967. Zbl0158.20505MR36 #4552
  4. [BeSt] H. BEHNKE und K. STEIN, Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann., 120 (1948), 430-461. Zbl0038.23502MR10,696c
  5. [BS] R. BOTT and G. SEGAL, The cohomology of the vector fields on a manifold, Topology, 16 (1977) 285-298. Zbl0387.57012MR58 #31102
  6. [C] H. CARTAN, Séminaire H. Cartan 1951/1952, Fonctions analytiques de plusieurs variables. Zbl0049.06404
  7. [F] B.L. FEIGIN, The plenary lecture at ICM, Kyoto 1990. 
  8. [FF] B.L. FEIGIN and D.B. FUKS, Homology of the Lie algebra of vector fields on the line, Functional Anal. Appl., 14 (1980), 201-212. Zbl0487.57011
  9. [Go] L.V. GONCHAROVA, Cohomology of Lie algebra of formal vector fields on the line, Functional Anal. Appl., 7 (2) (1973), 6-14. Zbl0284.17006MR49 #4058a
  10. [G,TVS] A. GROTHENDIECK, Topological Vector Spaces, Gordon and Breach, New York, London, Paris, 1973. 
  11. [G,PTT] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, (1955). Zbl0064.35501MR17,763c
  12. [G,DF] A. GROTHENDIECK, Sur les espaces (F) et (DF), Summa Brasil. Math., 3 (1954), 57-122. Zbl0058.09803MR17,765b
  13. [GF] I.M. GEL'FAND and D.B. FUKS, The cohomologies of the Lie algebra of the vector fields in a circle, Functional Anal. Appl., 2 (1968), 342-343. Zbl0176.11501MR39 #6348a
  14. [GF1] I.M. GEL'FAND and D.B. FUKS, Cohomologies of the Lie algebra of tangential vector fields of a smooth manifold. I Functional Anal. Appl., 3 (1969), 194-210. II, 4 (1970), 110-116. Zbl0216.20301
  15. [H] L. HÖRMANDER, An introduction to complex analysis in several variables, 2nd. ed., van Nostrand, 1966. Zbl0138.06203
  16. [Ha] A. HAEFLIGER, Sur la cohomologie de l'algèbre de Lie des champs de vecteurs, Ann. scient. Éc. Norm. Sup., 9 (1976), 503-532. Zbl0342.57014MR56 #6674
  17. [HS] G. HOCHSCHILD and J.-P. SERRE, Cohomology of Lie algebras, Ann. Math., 57 (1953), 591-603. Zbl0053.01402MR14,943c
  18. [K] H. KOMATSU, Theory of locally convex spaces, Dept. Math., Univ. of Tokyo, 1974. 
  19. [K1] H. KOMATSU, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan, 19 (1955), 366-383. Zbl0168.10603MR36 #646
  20. [M] J. MILNOR, On axiomatic homology theory, Pacific J. Math, 12 (1962), 337-341. Zbl0114.39604MR28 #2544
  21. [P] V.P. PALAMODOV, The projective limit functor in the category of linear topological spaces, Math. USSR-Sbornik, 4 (1968), 529-559. Zbl0175.41801
  22. [R] V.N. REŠETNIKOV, On the cohomology of the Lie algebra of vector fields on a manifold with non trivial coefficients, Soviet Math. Dokl., 14 (1) (1973), 234-240. Zbl0295.57009
  23. [R1] V.N. REŠETNIKOV, On the cohomology of two Lie algebras of vector fields on a circle, Uspehi Mat. Nauk, 26 (1) (1971), 231-232 (Russian). Zbl0225.57025
  24. [RF] V.S. RETAKH and B.L. FEIGIN, On the cohomology of certain Lie algebras and superalgebras of vector fields, Russian Math. Surveys, 37 (2) (1982), 251-252. Zbl0505.58040MR83m:58083
  25. [S] L. SCHWARTZ, Séminaire L. Schwartz 1953/1954, Produits tensoriels topologiques d'espaces vectoriels topologiques, 1954. 
  26. [T] F. TREVES, Topological vector spaces, distributions and kernels, Academic Press, 1967. Zbl0171.10402MR37 #726
  27. [Ts] T. TSUJISHITA, Continuous cohomology of the Lie algebra if vector fields, Mem. Amer. Math. Soc., 253, (1981). Zbl0482.58036MR84b:17015
  28. [V] F.V. VAINSHTEIN, Filtering bases, cohomology of infinite dimensional Lie algebras and Laplace operators, Functional Anal. Appl., 19 (1985), 259-269. Zbl0593.17010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.