Constructive invariant theory for tori

David Wehlau

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 4, page 1055-1066
  • ISSN: 0373-0956

Abstract

top
Consider a rational representation of an algebraic torus T on a vector space V . Suppose that { f 1 , , f p } is a homogeneous minimal generating set for the ring of invariants, k [ V ] T . New upper bounds are derived for the number N V , T : = max { deg f i } . These bounds are expressed in terms of the volume of the convex hull of the weights of V and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators { f 1 , , f s } consisting of monomials and such that k [ V ] T is integral over k [ f 1 , , f s ] .

How to cite

top

Wehlau, David. "Constructive invariant theory for tori." Annales de l'institut Fourier 43.4 (1993): 1055-1066. <http://eudml.org/doc/75025>.

@article{Wehlau1993,
abstract = {Consider a rational representation of an algebraic torus $T$ on a vector space $V$. Suppose that $\lbrace f_ 1, \dots ,f_p\rbrace $ is a homogeneous minimal generating set for the ring of invariants, $\{\bf k\}[V]^T$. New upper bounds are derived for the number $N_\{V,T\}:=\{\rm max\} \lbrace \{\rm deg\} f_i\rbrace $. These bounds are expressed in terms of the volume of the convex hull of the weights of $V$ and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators $\lbrace f_1,\dots ,f_s\rbrace $ consisting of monomials and such that $\{\bf k\} [V]^T$ is integral over $k[f_1,\dots ,f_s]$.},
author = {Wehlau, David},
journal = {Annales de l'institut Fourier},
keywords = {torus invariants; torus representations; algebraic torus; ring of invariants},
language = {eng},
number = {4},
pages = {1055-1066},
publisher = {Association des Annales de l'Institut Fourier},
title = {Constructive invariant theory for tori},
url = {http://eudml.org/doc/75025},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Wehlau, David
TI - Constructive invariant theory for tori
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 4
SP - 1055
EP - 1066
AB - Consider a rational representation of an algebraic torus $T$ on a vector space $V$. Suppose that $\lbrace f_ 1, \dots ,f_p\rbrace $ is a homogeneous minimal generating set for the ring of invariants, ${\bf k}[V]^T$. New upper bounds are derived for the number $N_{V,T}:={\rm max} \lbrace {\rm deg} f_i\rbrace $. These bounds are expressed in terms of the volume of the convex hull of the weights of $V$ and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators $\lbrace f_1,\dots ,f_s\rbrace $ consisting of monomials and such that ${\bf k} [V]^T$ is integral over $k[f_1,\dots ,f_s]$.
LA - eng
KW - torus invariants; torus representations; algebraic torus; ring of invariants
UR - http://eudml.org/doc/75025
ER -

References

top
  1. [B] A. BRONDSTED, An Introduction to Convex Polytopes, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0509.52001MR84d:52009
  2. [EW] G. EWALD, U. WESSELS, On the ampleness of invertible sheaves in complete projective toric varieties, Results in Math., (1991), 275-278. Zbl0739.14031MR92b:14028
  3. [Ga] F.R. GANTMACHER, The Theory of Matrices, Vol. 1, Chelsea Publishing Company, New York, 1959. Zbl0927.15001
  4. [Go] P. GORDAN, Invariantentheorie, Chelsea Publishing Company, New York, 1987. 
  5. [K] G. KEMPF, Computing Invariants, S. S. Koh (Ed.) Invariant Theory, Lect. Notes Math., 1278, 81-94, Springer-Verlag, Berlin-Heidelberg-New York, 1987. Zbl0633.14007MR89h:20057
  6. [N1] E. NOETHER, Der endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77 (1916), 89-92. Zbl45.0198.01JFM45.0198.01
  7. [N2] E. NOETHER, Der endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p., Nachr. v. d. Ges. Wiss. zu Göttingen, (1926), 485-491. JFM52.0106.01
  8. [O] T. ODA, Convex Bodies and Algebraic Geometry, Ergeb. Math. und Grenzgeb., Bd. 15, Springer-Verlag, Berlin-Heidelberg-New York, 1988. Zbl0628.52002
  9. [P] V.L. POPOV, Constructive Invariant Theory, Astérisque, 87/88 (1981), 303-334. Zbl0491.14004MR83i:14040
  10. [R] H.J. RYSER, Maximal Determinants in Combinatorial Investigations, Can. Jour. Math., 8 (1956), 245-249. Zbl0071.35903MR18,105a
  11. [S] B. SCHMID, Finite Groups and Invariant Theory, M.-P. Malliavin (Ed.) Topics in Invariant Theory (Lect. Notes Math. 1478), 35-66, Springer-Verlag, Berlin-Heidelberg-New York, 1991. Zbl0770.20004MR94c:13002
  12. [St] R.P. STANLEY, Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, Boston-Basel-Stuttgart, 1983. Zbl0537.13009MR85b:05002
  13. [W] D. WEHLAU, The Popov Conjecture for Tori, Proc. Amer. Math. Soc., 114 (1992), 839-845. Zbl0754.20013MR92f:14049

NotesEmbed ?

top

You must be logged in to post comments.