Constructive invariant theory for tori

David Wehlau

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 4, page 1055-1066
  • ISSN: 0373-0956

Abstract

top
Consider a rational representation of an algebraic torus T on a vector space V . Suppose that { f 1 , , f p } is a homogeneous minimal generating set for the ring of invariants, k [ V ] T . New upper bounds are derived for the number N V , T : = max { deg f i } . These bounds are expressed in terms of the volume of the convex hull of the weights of V and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators { f 1 , , f s } consisting of monomials and such that k [ V ] T is integral over k [ f 1 , , f s ] .

How to cite

top

Wehlau, David. "Constructive invariant theory for tori." Annales de l'institut Fourier 43.4 (1993): 1055-1066. <http://eudml.org/doc/75025>.

@article{Wehlau1993,
abstract = {Consider a rational representation of an algebraic torus $T$ on a vector space $V$. Suppose that $\lbrace f_ 1, \dots ,f_p\rbrace $ is a homogeneous minimal generating set for the ring of invariants, $\{\bf k\}[V]^T$. New upper bounds are derived for the number $N_\{V,T\}:=\{\rm max\} \lbrace \{\rm deg\} f_i\rbrace $. These bounds are expressed in terms of the volume of the convex hull of the weights of $V$ and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators $\lbrace f_1,\dots ,f_s\rbrace $ consisting of monomials and such that $\{\bf k\} [V]^T$ is integral over $k[f_1,\dots ,f_s]$.},
author = {Wehlau, David},
journal = {Annales de l'institut Fourier},
keywords = {torus invariants; torus representations; algebraic torus; ring of invariants},
language = {eng},
number = {4},
pages = {1055-1066},
publisher = {Association des Annales de l'Institut Fourier},
title = {Constructive invariant theory for tori},
url = {http://eudml.org/doc/75025},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Wehlau, David
TI - Constructive invariant theory for tori
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 4
SP - 1055
EP - 1066
AB - Consider a rational representation of an algebraic torus $T$ on a vector space $V$. Suppose that $\lbrace f_ 1, \dots ,f_p\rbrace $ is a homogeneous minimal generating set for the ring of invariants, ${\bf k}[V]^T$. New upper bounds are derived for the number $N_{V,T}:={\rm max} \lbrace {\rm deg} f_i\rbrace $. These bounds are expressed in terms of the volume of the convex hull of the weights of $V$ and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators $\lbrace f_1,\dots ,f_s\rbrace $ consisting of monomials and such that ${\bf k} [V]^T$ is integral over $k[f_1,\dots ,f_s]$.
LA - eng
KW - torus invariants; torus representations; algebraic torus; ring of invariants
UR - http://eudml.org/doc/75025
ER -

References

top
  1. [B] A. BRONDSTED, An Introduction to Convex Polytopes, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0509.52001MR84d:52009
  2. [EW] G. EWALD, U. WESSELS, On the ampleness of invertible sheaves in complete projective toric varieties, Results in Math., (1991), 275-278. Zbl0739.14031MR92b:14028
  3. [Ga] F.R. GANTMACHER, The Theory of Matrices, Vol. 1, Chelsea Publishing Company, New York, 1959. Zbl0927.15001
  4. [Go] P. GORDAN, Invariantentheorie, Chelsea Publishing Company, New York, 1987. 
  5. [K] G. KEMPF, Computing Invariants, S. S. Koh (Ed.) Invariant Theory, Lect. Notes Math., 1278, 81-94, Springer-Verlag, Berlin-Heidelberg-New York, 1987. Zbl0633.14007MR89h:20057
  6. [N1] E. NOETHER, Der endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77 (1916), 89-92. Zbl45.0198.01JFM45.0198.01
  7. [N2] E. NOETHER, Der endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p., Nachr. v. d. Ges. Wiss. zu Göttingen, (1926), 485-491. JFM52.0106.01
  8. [O] T. ODA, Convex Bodies and Algebraic Geometry, Ergeb. Math. und Grenzgeb., Bd. 15, Springer-Verlag, Berlin-Heidelberg-New York, 1988. Zbl0628.52002
  9. [P] V.L. POPOV, Constructive Invariant Theory, Astérisque, 87/88 (1981), 303-334. Zbl0491.14004MR83i:14040
  10. [R] H.J. RYSER, Maximal Determinants in Combinatorial Investigations, Can. Jour. Math., 8 (1956), 245-249. Zbl0071.35903MR18,105a
  11. [S] B. SCHMID, Finite Groups and Invariant Theory, M.-P. Malliavin (Ed.) Topics in Invariant Theory (Lect. Notes Math. 1478), 35-66, Springer-Verlag, Berlin-Heidelberg-New York, 1991. Zbl0770.20004MR94c:13002
  12. [St] R.P. STANLEY, Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, Boston-Basel-Stuttgart, 1983. Zbl0537.13009MR85b:05002
  13. [W] D. WEHLAU, The Popov Conjecture for Tori, Proc. Amer. Math. Soc., 114 (1992), 839-845. Zbl0754.20013MR92f:14049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.