Harmonic functions satisfying weighted sign conditions on the boundary

M. S. Baouendi; L. P. Rothschild

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 5, page 1311-1318
  • ISSN: 0373-0956

How to cite

top

Baouendi, M. S., and Rothschild, L. P.. "Harmonic functions satisfying weighted sign conditions on the boundary." Annales de l'institut Fourier 43.5 (1993): 1311-1318. <http://eudml.org/doc/75039>.

@article{Baouendi1993,
author = {Baouendi, M. S., Rothschild, L. P.},
journal = {Annales de l'institut Fourier},
keywords = {unique continuation; Hopf lemma; harmonic function},
language = {eng},
number = {5},
pages = {1311-1318},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic functions satisfying weighted sign conditions on the boundary},
url = {http://eudml.org/doc/75039},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Baouendi, M. S.
AU - Rothschild, L. P.
TI - Harmonic functions satisfying weighted sign conditions on the boundary
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 5
SP - 1311
EP - 1318
LA - eng
KW - unique continuation; Hopf lemma; harmonic function
UR - http://eudml.org/doc/75039
ER -

References

top
  1. [1] H. ALEXANDER, Boundary behavior of certain holomorphic maps, Michigan Math. J., 38 (1991), 117-128. Zbl0735.32005MR92c:32031
  2. [2] H. ALEXANDER, A weak Hopf Lemma for holomorphic mappings, preprint. Zbl0840.30018
  3. [3] S. ALINHAC, M.S. BAOUENDI, L.P. ROTHSCHILD, Unique continuation and regularity at the boundary for holomorphic functions, Duke J. Math., 61 (1990), 635-653. Zbl0718.32021MR92d:32033
  4. [4] M.S. BAOUENDI and L.P. ROTHSCHILD, Unique continuation and a Schwarz reflection principle for analytic sets, Comm. P.D.E., 18 (1993), 1961-1970. Zbl0794.32015MR94i:32014
  5. [5] M.S. BAOUENDI and L.P. ROTHSCHILD, A local Hopf lemma and unique continuation for harmonic functions, Duke J. Math., Inter. Research Notices, 71 (1993), 245-251. Zbl0787.31002MR94i:31008
  6. [6] S. BELL and L. LEMPERT, A C∞ Schwarz reflection principle in one and several complex variables, J. Diff. Geom., 32 (1990), 889-915. Zbl0716.32002MR91k:32017
  7. [7] S. HUANG and S G. KRANTZ, A unique continuation problem for holomorphic mappings, Comm. P.D.E., 18 (1993), 241-263. Zbl0781.32018MR94b:32022
  8. [8] C. MIRANDA, Partial differential equations of elliptic type, Ergeb.Math. Grenzgeb. (n.F.), 2, Springer-Verlag, Berlin, 1970. Zbl0198.14101MR44 #1924
  9. [9] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966. 
  10. [10] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton NJ, 1970. Zbl0207.13501MR44 #7280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.