Harmonic functions satisfying weighted sign conditions on the boundary
M. S. Baouendi; L. P. Rothschild
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 5, page 1311-1318
- ISSN: 0373-0956
Access Full Article
topHow to cite
topReferences
top- [1] H. ALEXANDER, Boundary behavior of certain holomorphic maps, Michigan Math. J., 38 (1991), 117-128. Zbl0735.32005MR92c:32031
- [2] H. ALEXANDER, A weak Hopf Lemma for holomorphic mappings, preprint. Zbl0840.30018
- [3] S. ALINHAC, M.S. BAOUENDI, L.P. ROTHSCHILD, Unique continuation and regularity at the boundary for holomorphic functions, Duke J. Math., 61 (1990), 635-653. Zbl0718.32021MR92d:32033
- [4] M.S. BAOUENDI and L.P. ROTHSCHILD, Unique continuation and a Schwarz reflection principle for analytic sets, Comm. P.D.E., 18 (1993), 1961-1970. Zbl0794.32015MR94i:32014
- [5] M.S. BAOUENDI and L.P. ROTHSCHILD, A local Hopf lemma and unique continuation for harmonic functions, Duke J. Math., Inter. Research Notices, 71 (1993), 245-251. Zbl0787.31002MR94i:31008
- [6] S. BELL and L. LEMPERT, A C∞ Schwarz reflection principle in one and several complex variables, J. Diff. Geom., 32 (1990), 889-915. Zbl0716.32002MR91k:32017
- [7] S. HUANG and S G. KRANTZ, A unique continuation problem for holomorphic mappings, Comm. P.D.E., 18 (1993), 241-263. Zbl0781.32018MR94b:32022
- [8] C. MIRANDA, Partial differential equations of elliptic type, Ergeb.Math. Grenzgeb. (n.F.), 2, Springer-Verlag, Berlin, 1970. Zbl0198.14101MR44 #1924
- [9] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966.
- [10] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton NJ, 1970. Zbl0207.13501MR44 #7280