Harmonic functions satisfying weighted sign conditions on the boundary
M. S. Baouendi; L. P. Rothschild
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 5, page 1311-1318
- ISSN: 0373-0956
Access Full Article
topHow to cite
topBaouendi, M. S., and Rothschild, L. P.. "Harmonic functions satisfying weighted sign conditions on the boundary." Annales de l'institut Fourier 43.5 (1993): 1311-1318. <http://eudml.org/doc/75039>.
@article{Baouendi1993,
author = {Baouendi, M. S., Rothschild, L. P.},
journal = {Annales de l'institut Fourier},
keywords = {unique continuation; Hopf lemma; harmonic function},
language = {eng},
number = {5},
pages = {1311-1318},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic functions satisfying weighted sign conditions on the boundary},
url = {http://eudml.org/doc/75039},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Baouendi, M. S.
AU - Rothschild, L. P.
TI - Harmonic functions satisfying weighted sign conditions on the boundary
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 5
SP - 1311
EP - 1318
LA - eng
KW - unique continuation; Hopf lemma; harmonic function
UR - http://eudml.org/doc/75039
ER -
References
top- [1] H. ALEXANDER, Boundary behavior of certain holomorphic maps, Michigan Math. J., 38 (1991), 117-128. Zbl0735.32005MR92c:32031
- [2] H. ALEXANDER, A weak Hopf Lemma for holomorphic mappings, preprint. Zbl0840.30018
- [3] S. ALINHAC, M.S. BAOUENDI, L.P. ROTHSCHILD, Unique continuation and regularity at the boundary for holomorphic functions, Duke J. Math., 61 (1990), 635-653. Zbl0718.32021MR92d:32033
- [4] M.S. BAOUENDI and L.P. ROTHSCHILD, Unique continuation and a Schwarz reflection principle for analytic sets, Comm. P.D.E., 18 (1993), 1961-1970. Zbl0794.32015MR94i:32014
- [5] M.S. BAOUENDI and L.P. ROTHSCHILD, A local Hopf lemma and unique continuation for harmonic functions, Duke J. Math., Inter. Research Notices, 71 (1993), 245-251. Zbl0787.31002MR94i:31008
- [6] S. BELL and L. LEMPERT, A C∞ Schwarz reflection principle in one and several complex variables, J. Diff. Geom., 32 (1990), 889-915. Zbl0716.32002MR91k:32017
- [7] S. HUANG and S G. KRANTZ, A unique continuation problem for holomorphic mappings, Comm. P.D.E., 18 (1993), 241-263. Zbl0781.32018MR94b:32022
- [8] C. MIRANDA, Partial differential equations of elliptic type, Ergeb.Math. Grenzgeb. (n.F.), 2, Springer-Verlag, Berlin, 1970. Zbl0198.14101MR44 #1924
- [9] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966.
- [10] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton NJ, 1970. Zbl0207.13501MR44 #7280
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.