Complete minimal surfaces in 3 with type Enneper end

Nedir Do Espirito Santo

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 2, page 525-557
  • ISSN: 0373-0956

Abstract

top
We show that there exists a complete minimal surface immersed into 3 which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is - 16 π .

How to cite

top

Do Espirito Santo, Nedir. "Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end." Annales de l'institut Fourier 44.2 (1994): 525-557. <http://eudml.org/doc/75072>.

@article{DoEspiritoSanto1994,
abstract = {We show that there exists a complete minimal surface immersed into $\{\Bbb R\}^3$ which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is $-16\pi $.},
author = {Do Espirito Santo, Nedir},
journal = {Annales de l'institut Fourier},
keywords = {complete minimal surface; conformally equivalent; Riemann surface; Enneper type; total curvature},
language = {eng},
number = {2},
pages = {525-557},
publisher = {Association des Annales de l'Institut Fourier},
title = {Complete minimal surfaces in $\{\mathbb \{R\}\}^3$ with type Enneper end},
url = {http://eudml.org/doc/75072},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Do Espirito Santo, Nedir
TI - Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 2
SP - 525
EP - 557
AB - We show that there exists a complete minimal surface immersed into ${\Bbb R}^3$ which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is $-16\pi $.
LA - eng
KW - complete minimal surface; conformally equivalent; Riemann surface; Enneper type; total curvature
UR - http://eudml.org/doc/75072
ER -

References

top
  1. [CG]C.C. CHEN, F. GACKSTTATER, Elliptische und Hyperelliptische Funktionen und Vollständige Minimalflächen von Enneperschen Typ, Math. Ann., 259 (1982), 359-369. Zbl0468.53008
  2. [GP]A. GRIFFITHS, Introduction to Algebraic Curves, Providence, AMS, 1989. 
  3. [H]A. HUBER, On subharmonic Functions and Differential Geometry in the Large, Comment Math. Helv., 32 (1957), 13-72. Zbl0080.15001MR20 #970
  4. [JM]L. JORGE, W. MEEKS, III The Topology of Complete Minimal Surfaces of Finite Total Gaussian Curvature, Topology, 22 (1983), 203-221. Zbl0517.53008MR84d:53006
  5. [K]H. KARCHER, Construction of Minimal Surfaces, Surveys in Geometry, University of Tokyo 1989, p. 1-96, and Lecture Notes 12, SFB256, Bonn, 1989. 
  6. [O]R. OSSERMAN, A Survey of Minimal Surfaces, van Nostrand Reinhold Company, 1969. Zbl0209.52901MR41 #934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.