Complete minimal surfaces in with type Enneper end
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 2, page 525-557
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDo Espirito Santo, Nedir. "Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end." Annales de l'institut Fourier 44.2 (1994): 525-557. <http://eudml.org/doc/75072>.
@article{DoEspiritoSanto1994,
abstract = {We show that there exists a complete minimal surface immersed into $\{\Bbb R\}^3$ which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is $-16\pi $.},
author = {Do Espirito Santo, Nedir},
journal = {Annales de l'institut Fourier},
keywords = {complete minimal surface; conformally equivalent; Riemann surface; Enneper type; total curvature},
language = {eng},
number = {2},
pages = {525-557},
publisher = {Association des Annales de l'Institut Fourier},
title = {Complete minimal surfaces in $\{\mathbb \{R\}\}^3$ with type Enneper end},
url = {http://eudml.org/doc/75072},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Do Espirito Santo, Nedir
TI - Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 2
SP - 525
EP - 557
AB - We show that there exists a complete minimal surface immersed into ${\Bbb R}^3$ which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is $-16\pi $.
LA - eng
KW - complete minimal surface; conformally equivalent; Riemann surface; Enneper type; total curvature
UR - http://eudml.org/doc/75072
ER -
References
top- [CG]C.C. CHEN, F. GACKSTTATER, Elliptische und Hyperelliptische Funktionen und Vollständige Minimalflächen von Enneperschen Typ, Math. Ann., 259 (1982), 359-369. Zbl0468.53008
- [GP]A. GRIFFITHS, Introduction to Algebraic Curves, Providence, AMS, 1989.
- [H]A. HUBER, On subharmonic Functions and Differential Geometry in the Large, Comment Math. Helv., 32 (1957), 13-72. Zbl0080.15001MR20 #970
- [JM]L. JORGE, W. MEEKS, III The Topology of Complete Minimal Surfaces of Finite Total Gaussian Curvature, Topology, 22 (1983), 203-221. Zbl0517.53008MR84d:53006
- [K]H. KARCHER, Construction of Minimal Surfaces, Surveys in Geometry, University of Tokyo 1989, p. 1-96, and Lecture Notes 12, SFB256, Bonn, 1989.
- [O]R. OSSERMAN, A Survey of Minimal Surfaces, van Nostrand Reinhold Company, 1969. Zbl0209.52901MR41 #934
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.