Construction of a certain superharmonic majorant
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 3, page 729-766
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKoosis, Paul. "Construction of a certain superharmonic majorant." Annales de l'institut Fourier 44.3 (1994): 729-766. <http://eudml.org/doc/75080>.
@article{Koosis1994,
abstract = {Given a function $f(t)\ge 0$ on $\{\Bbb R\}$ with $\int ^\infty _\{-\infty \} (f(t)/(1+t^2))dt< \infty $ and $\vert f(t)-f(t^\{\prime \})\vert \le l\vert t-t^\{\prime \}\vert $, a procedure is exhibited for obtaining on $\{\Bbb C\}$ a (finite) superharmonic majorant of the function\begin\{\} F(z):\{1\over \pi \}\int ^\infty \_\{-\infty \}\{\vert \{\frak J\}z\vert \over \vert z-t\vert ^2\} f(t)dt-Al\vert \{\frak J\}z\vert ,\end\{\}where $A$ is a certain (large) absolute constant. This leads to fairly constructive proofs of the two main multiplier theorems of Beurling and Malliavin. The principal tool used is a version of the following lemma going back almost surely to Beurling: suppose that $f(t)$, positive and bounded away from 0 on $\{\Bbb R\}$, is such that $\int ^\infty _\{-\infty \}(f(t)/(1+t^2)dt< \infty $ and denote, for any constant $\alpha >0$ and each $x\in \{\Bbb R\}$, the unique value $>0$ of $y$ making\begin\{\}\{1\over \pi \}\int ^\infty \_\{-\infty \}\{yf(t)\over (x-t)^2+y^2\}dt=\alpha y\end\{\}by $Y_\alpha (x)$; then $\int ^\infty _\{-\infty \}(Y_\alpha (x)/(1+ x^2))dx< \infty $.},
author = {Koosis, Paul},
journal = {Annales de l'institut Fourier},
keywords = {Poisson integrals; superharmonic functions; superharmonic majorants; multipliers; multiplier theorems of Beurling and Malliavin},
language = {eng},
number = {3},
pages = {729-766},
publisher = {Association des Annales de l'Institut Fourier},
title = {Construction of a certain superharmonic majorant},
url = {http://eudml.org/doc/75080},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Koosis, Paul
TI - Construction of a certain superharmonic majorant
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 729
EP - 766
AB - Given a function $f(t)\ge 0$ on ${\Bbb R}$ with $\int ^\infty _{-\infty } (f(t)/(1+t^2))dt< \infty $ and $\vert f(t)-f(t^{\prime })\vert \le l\vert t-t^{\prime }\vert $, a procedure is exhibited for obtaining on ${\Bbb C}$ a (finite) superharmonic majorant of the function\begin{} F(z):{1\over \pi }\int ^\infty _{-\infty }{\vert {\frak J}z\vert \over \vert z-t\vert ^2} f(t)dt-Al\vert {\frak J}z\vert ,\end{}where $A$ is a certain (large) absolute constant. This leads to fairly constructive proofs of the two main multiplier theorems of Beurling and Malliavin. The principal tool used is a version of the following lemma going back almost surely to Beurling: suppose that $f(t)$, positive and bounded away from 0 on ${\Bbb R}$, is such that $\int ^\infty _{-\infty }(f(t)/(1+t^2)dt< \infty $ and denote, for any constant $\alpha >0$ and each $x\in {\Bbb R}$, the unique value $>0$ of $y$ making\begin{}{1\over \pi }\int ^\infty _{-\infty }{yf(t)\over (x-t)^2+y^2}dt=\alpha y\end{}by $Y_\alpha (x)$; then $\int ^\infty _{-\infty }(Y_\alpha (x)/(1+ x^2))dx< \infty $.
LA - eng
KW - Poisson integrals; superharmonic functions; superharmonic majorants; multipliers; multiplier theorems of Beurling and Malliavin
UR - http://eudml.org/doc/75080
ER -
References
top- [1] P. KOOSIS, La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entières de type exponentiel jouant le rôle de multiplicateurs, Annales de l'Inst. Fourier, 33-1 (1983), 67-107. Zbl0494.30027MR84k:30032
- [2] P. KOOSIS, The Logarithmic Integral, II, Cambridge University Press, Cambridge, 1992, xxvi + 574p. Zbl0791.30020MR94i:30027
- [3] A. BEURLING, and P. MALLIAVIN, On Fourier transforms of measures with compact support, Acta Math., 107 (1962), 291-309. Zbl0127.32601MR26 #5361
- [4] P. KOOSIS, Harmonic estimation in certain slit regions and a theorem of Beurling and Malliavin, Acta Math., 142 (1979), 275-304. Zbl0406.31001MR80d:31007
- [5] P. KOOSIS, A relation between two results about entire functions of exponential type. To appear in a special M.G. Krein memorial issue of the Ukrainskii Matem. Zhurnal, edited by I.V. Ostrovskii. Zbl0840.30012
- [6] P. KOOSIS, Weighted polynomial approximation on arithmetic progressions of intervals or points, Acta Math., 116 (1966), 223-277. Zbl0152.05403MR38 #1439
- [7] P. KOOSIS, The Logarithmic Integral, I, Cambridge University Press, Cambridge, 1988, xvi + 606p. Zbl0665.30038MR90a:30097
- [8] A. BEURLING, A minimum principle for positive harmonic functions, Annales Acad. Scient. Fennicae, Ser. A I, 372 (1965), 1-7. Zbl0139.06402MR32 #5904
- [9] A. BEURLING, and P. MALLIAVIN, On the closure of characters and the zeros of entire functions, Acta Math., 118 (1967), 79-93. Zbl0171.11901MR35 #654
- [10] W. FUCHS, Topics in the Theory of Functions of one Complex Variable, Van Nostrand, Princeton, 1967, vi + 193p. Zbl0155.11502MR36 #3954
- [11] A. ERDÉLYI, et al. Tables of Integral Transforms, I, McGraw-Hill, New York, 1954, xx + 391p. Zbl0055.36401
- [12] M. TSUJI, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959, 590p. Zbl0087.28401MR22 #5712
- [13] G.M. GOLUSIN, Geometrische Funktionentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1957, xii + 438p. Zbl0083.06604MR19,735e
- [14] K. HALISTE, Estimates of harmonic measures, Arkiv för Mat., 6 (1965), 1-31. Zbl0178.13801MR34 #1547
- [15] P. SJÖGREN, La convolution dans L1 faible de Rn, Séminaire Choquet, 13e année, 1973/1974, no. 14. 10p. Zbl0317.42019
- [16] P. SJÖGREN, Weak L1 characterizations of Poisson integrals, Green potentials, and Hp spaces, Trans. A.M.S., 233 (1977), 179-196. Zbl0332.31003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.