Construction of a certain superharmonic majorant

Paul Koosis

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 729-766
  • ISSN: 0373-0956

Abstract

top
Given a function f ( t ) 0 on with - ( f ( t ) / ( 1 + t 2 ) ) d t < and | f ( t ) - f ( t ' ) | l | t - t ' | , a procedure is exhibited for obtaining on a (finite) superharmonic majorant of the function F ( z ) : 1 π - | 𝔍 z | | z - t | 2 f ( t ) d t - A l | 𝔍 z | , where A is a certain (large) absolute constant. This leads to fairly constructive proofs of the two main multiplier theorems of Beurling and Malliavin. The principal tool used is a version of the following lemma going back almost surely to Beurling: suppose that f ( t ) , positive and bounded away from 0 on , is such that - ( f ( t ) / ( 1 + t 2 ) d t < and denote, for any constant α > 0 and each x , the unique value > 0 of y making 1 π - y f ( t ) ( x - t ) 2 + y 2 d t = α y by Y α ( x ) ; then - ( Y α ( x ) / ( 1 + x 2 ) ) d x < .

How to cite

top

Koosis, Paul. "Construction of a certain superharmonic majorant." Annales de l'institut Fourier 44.3 (1994): 729-766. <http://eudml.org/doc/75080>.

@article{Koosis1994,
abstract = {Given a function $f(t)\ge 0$ on $\{\Bbb R\}$ with $\int ^\infty _\{-\infty \} (f(t)/(1+t^2))dt&lt; \infty $ and $\vert f(t)-f(t^\{\prime \})\vert \le l\vert t-t^\{\prime \}\vert $, a procedure is exhibited for obtaining on $\{\Bbb C\}$ a (finite) superharmonic majorant of the function\begin\{\} F(z):\{1\over \pi \}\int ^\infty \_\{-\infty \}\{\vert \{\frak J\}z\vert \over \vert z-t\vert ^2\} f(t)dt-Al\vert \{\frak J\}z\vert ,\end\{\}where $A$ is a certain (large) absolute constant. This leads to fairly constructive proofs of the two main multiplier theorems of Beurling and Malliavin. The principal tool used is a version of the following lemma going back almost surely to Beurling: suppose that $f(t)$, positive and bounded away from 0 on $\{\Bbb R\}$, is such that $\int ^\infty _\{-\infty \}(f(t)/(1+t^2)dt&lt; \infty $ and denote, for any constant $\alpha &gt;0$ and each $x\in \{\Bbb R\}$, the unique value $&gt;0$ of $y$ making\begin\{\}\{1\over \pi \}\int ^\infty \_\{-\infty \}\{yf(t)\over (x-t)^2+y^2\}dt=\alpha y\end\{\}by $Y_\alpha (x)$; then $\int ^\infty _\{-\infty \}(Y_\alpha (x)/(1+ x^2))dx&lt; \infty $.},
author = {Koosis, Paul},
journal = {Annales de l'institut Fourier},
keywords = {Poisson integrals; superharmonic functions; superharmonic majorants; multipliers; multiplier theorems of Beurling and Malliavin},
language = {eng},
number = {3},
pages = {729-766},
publisher = {Association des Annales de l'Institut Fourier},
title = {Construction of a certain superharmonic majorant},
url = {http://eudml.org/doc/75080},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Koosis, Paul
TI - Construction of a certain superharmonic majorant
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 729
EP - 766
AB - Given a function $f(t)\ge 0$ on ${\Bbb R}$ with $\int ^\infty _{-\infty } (f(t)/(1+t^2))dt&lt; \infty $ and $\vert f(t)-f(t^{\prime })\vert \le l\vert t-t^{\prime }\vert $, a procedure is exhibited for obtaining on ${\Bbb C}$ a (finite) superharmonic majorant of the function\begin{} F(z):{1\over \pi }\int ^\infty _{-\infty }{\vert {\frak J}z\vert \over \vert z-t\vert ^2} f(t)dt-Al\vert {\frak J}z\vert ,\end{}where $A$ is a certain (large) absolute constant. This leads to fairly constructive proofs of the two main multiplier theorems of Beurling and Malliavin. The principal tool used is a version of the following lemma going back almost surely to Beurling: suppose that $f(t)$, positive and bounded away from 0 on ${\Bbb R}$, is such that $\int ^\infty _{-\infty }(f(t)/(1+t^2)dt&lt; \infty $ and denote, for any constant $\alpha &gt;0$ and each $x\in {\Bbb R}$, the unique value $&gt;0$ of $y$ making\begin{}{1\over \pi }\int ^\infty _{-\infty }{yf(t)\over (x-t)^2+y^2}dt=\alpha y\end{}by $Y_\alpha (x)$; then $\int ^\infty _{-\infty }(Y_\alpha (x)/(1+ x^2))dx&lt; \infty $.
LA - eng
KW - Poisson integrals; superharmonic functions; superharmonic majorants; multipliers; multiplier theorems of Beurling and Malliavin
UR - http://eudml.org/doc/75080
ER -

References

top
  1. [1] P. KOOSIS, La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entières de type exponentiel jouant le rôle de multiplicateurs, Annales de l'Inst. Fourier, 33-1 (1983), 67-107. Zbl0494.30027MR84k:30032
  2. [2] P. KOOSIS, The Logarithmic Integral, II, Cambridge University Press, Cambridge, 1992, xxvi + 574p. Zbl0791.30020MR94i:30027
  3. [3] A. BEURLING, and P. MALLIAVIN, On Fourier transforms of measures with compact support, Acta Math., 107 (1962), 291-309. Zbl0127.32601MR26 #5361
  4. [4] P. KOOSIS, Harmonic estimation in certain slit regions and a theorem of Beurling and Malliavin, Acta Math., 142 (1979), 275-304. Zbl0406.31001MR80d:31007
  5. [5] P. KOOSIS, A relation between two results about entire functions of exponential type. To appear in a special M.G. Krein memorial issue of the Ukrainskii Matem. Zhurnal, edited by I.V. Ostrovskii. Zbl0840.30012
  6. [6] P. KOOSIS, Weighted polynomial approximation on arithmetic progressions of intervals or points, Acta Math., 116 (1966), 223-277. Zbl0152.05403MR38 #1439
  7. [7] P. KOOSIS, The Logarithmic Integral, I, Cambridge University Press, Cambridge, 1988, xvi + 606p. Zbl0665.30038MR90a:30097
  8. [8] A. BEURLING, A minimum principle for positive harmonic functions, Annales Acad. Scient. Fennicae, Ser. A I, 372 (1965), 1-7. Zbl0139.06402MR32 #5904
  9. [9] A. BEURLING, and P. MALLIAVIN, On the closure of characters and the zeros of entire functions, Acta Math., 118 (1967), 79-93. Zbl0171.11901MR35 #654
  10. [10] W. FUCHS, Topics in the Theory of Functions of one Complex Variable, Van Nostrand, Princeton, 1967, vi + 193p. Zbl0155.11502MR36 #3954
  11. [11] A. ERDÉLYI, et al. Tables of Integral Transforms, I, McGraw-Hill, New York, 1954, xx + 391p. Zbl0055.36401
  12. [12] M. TSUJI, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959, 590p. Zbl0087.28401MR22 #5712
  13. [13] G.M. GOLUSIN, Geometrische Funktionentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1957, xii + 438p. Zbl0083.06604MR19,735e
  14. [14] K. HALISTE, Estimates of harmonic measures, Arkiv för Mat., 6 (1965), 1-31. Zbl0178.13801MR34 #1547
  15. [15] P. SJÖGREN, La convolution dans L1 faible de Rn, Séminaire Choquet, 13e année, 1973/1974, no. 14. 10p. Zbl0317.42019
  16. [16] P. SJÖGREN, Weak L1 characterizations of Poisson integrals, Green potentials, and Hp spaces, Trans. A.M.S., 233 (1977), 179-196. Zbl0332.31003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.