Homogenization of codimension 1 actions of near a compact orbit
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 5, page 1435-1448
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCraizer, Marcos. "Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit." Annales de l'institut Fourier 44.5 (1994): 1435-1448. <http://eudml.org/doc/75104>.
@article{Craizer1994,
abstract = {Let $\Phi $ be a $C^\infty \,\{\Bbb R\}^n$-action on an orientable $(n+1)$-dimensional manifold. Assume $\Phi $ has an isolated compact orbit $T$ and let $W$ be a small tubular neighborhood of it. By a $C^\infty $ change of variables, we can write $W=\{\Bbb R\}^n/\{\Bbb Z\}^n\times I$ and $T=\{\Bbb T\}^n\times [0]$, where $I$ is some interval containing 0.In this work, we show that by a $C^0$ change of variables, $C^\infty $ outside $T$, we can make $\Phi _\{\vert W\}$ invariant by transformations of the type $(x,z)\rightarrow (x+a,z),\, a\in \{\Bbb R\}^n$, where $x\in \{\Bbb R\}^n/\{\Bbb Z\}^n$ and $z\in I$. As a corollary one cas describe completely the dynamics of $\Phi $ in $W$.},
author = {Craizer, Marcos},
journal = {Annales de l'institut Fourier},
keywords = {homogenization; codimension 1 actions of ; compact orbit; return times},
language = {eng},
number = {5},
pages = {1435-1448},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homogenization of codimension 1 actions of $\{\mathbb \{R\}\}^n$ near a compact orbit},
url = {http://eudml.org/doc/75104},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Craizer, Marcos
TI - Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 5
SP - 1435
EP - 1448
AB - Let $\Phi $ be a $C^\infty \,{\Bbb R}^n$-action on an orientable $(n+1)$-dimensional manifold. Assume $\Phi $ has an isolated compact orbit $T$ and let $W$ be a small tubular neighborhood of it. By a $C^\infty $ change of variables, we can write $W={\Bbb R}^n/{\Bbb Z}^n\times I$ and $T={\Bbb T}^n\times [0]$, where $I$ is some interval containing 0.In this work, we show that by a $C^0$ change of variables, $C^\infty $ outside $T$, we can make $\Phi _{\vert W}$ invariant by transformations of the type $(x,z)\rightarrow (x+a,z),\, a\in {\Bbb R}^n$, where $x\in {\Bbb R}^n/{\Bbb Z}^n$ and $z\in I$. As a corollary one cas describe completely the dynamics of $\Phi $ in $W$.
LA - eng
KW - homogenization; codimension 1 actions of ; compact orbit; return times
UR - http://eudml.org/doc/75104
ER -
References
top- [1] J.L. ARRAUT and M. CRAIZER, A characterization of 2-dimensional foliations of rank 2 on compact orientable 3-manifolds, preprint. Zbl0833.57014
- [2] G. CHATELET, H. ROSENBERG and D. WEIL, A classification of the topological types of ℝ2-actions on closed orientable 3-manifolds, Publ. Math. IHES, 43 (1973), 261-272. Zbl0278.57015MR49 #11533
- [3] N. KOPPEL, Commuting diffeomorphisms. Global Analysis, Proc. of Symp. in Pure Math., AMS, XIV (1970). Zbl0225.57020
- [4] R. MAÑÉ, Ergodic theory and differentiable dynamics, Springer-Verlag, 1987. Zbl0616.28007MR88c:58040
- [5] F. SERGERAERT, Feuilletages et difféomorphismes infiniment tangents à l'identité, Inv. Math., 39 (1977), 253-275. Zbl0327.58004MR57 #13973
- [6] G. SZEKERES, Regular iteration of real and complex functions, Acta Math., 100 (1958), 163-195. Zbl0145.07903MR21 #5744
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.