Refined theorems of the Birch and Swinnerton-Dyer type

Ki-Seng Tan

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 2, page 317-374
  • ISSN: 0373-0956

Abstract

top
In this paper, we generalize the context of the Mazur-Tate conjecture and sharpen, in a certain way, the statement of the conjecture. Our main result will be to establish the truth of a part of these new sharpened conjectures, provided that one assume the truth of the classical Birch and Swinnerton-Dyer conjectures. This is particularly striking in the function field case, where these results can be viewed as being a refinement of the earlier work of Tate and Milne.

How to cite

top

Tan, Ki-Seng. "Refined theorems of the Birch and Swinnerton-Dyer type." Annales de l'institut Fourier 45.2 (1995): 317-374. <http://eudml.org/doc/75121>.

@article{Tan1995,
abstract = {In this paper, we generalize the context of the Mazur-Tate conjecture and sharpen, in a certain way, the statement of the conjecture. Our main result will be to establish the truth of a part of these new sharpened conjectures, provided that one assume the truth of the classical Birch and Swinnerton-Dyer conjectures. This is particularly striking in the function field case, where these results can be viewed as being a refinement of the earlier work of Tate and Milne.},
author = {Tan, Ki-Seng},
journal = {Annales de l'institut Fourier},
keywords = {elliptic curve; -function; Birch-Swinnerton-Dyer conjecture; Mazur- Tate conjecture; height pairing; corrected discriminant},
language = {eng},
number = {2},
pages = {317-374},
publisher = {Association des Annales de l'Institut Fourier},
title = {Refined theorems of the Birch and Swinnerton-Dyer type},
url = {http://eudml.org/doc/75121},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Tan, Ki-Seng
TI - Refined theorems of the Birch and Swinnerton-Dyer type
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 2
SP - 317
EP - 374
AB - In this paper, we generalize the context of the Mazur-Tate conjecture and sharpen, in a certain way, the statement of the conjecture. Our main result will be to establish the truth of a part of these new sharpened conjectures, provided that one assume the truth of the classical Birch and Swinnerton-Dyer conjectures. This is particularly striking in the function field case, where these results can be viewed as being a refinement of the earlier work of Tate and Milne.
LA - eng
KW - elliptic curve; -function; Birch-Swinnerton-Dyer conjecture; Mazur- Tate conjecture; height pairing; corrected discriminant
UR - http://eudml.org/doc/75121
ER -

References

top
  1. [AT] E. ARTIN and J. TATE, Class Field Theory, Benjamin, New York, 1967. Zbl0176.33504
  2. [BS] Z. BOREVICH and I.R. SHAFAREVICH, Number Theorey, English translation, Academic Press, New York, 1966. Zbl0145.04902
  3. [D] P. DELIGNE, Les constants, etc., Séminaire Delange-Poisot-Poitou, 11e année 19, 1970. Zbl0215.08301
  4. [G] B. GROSS, On the value of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 35 (1988), 177-197. Zbl0681.12005MR89h:11071
  5. [GSt] R. GREENBERG and G. STEVENS, p-adic L-functions and p-adic modular forms, Invent. Math., 111 (1993), 407-447. Zbl0778.11034MR93m:11054
  6. [K] H. KISILEVSKY, Multiplicative independence in function fields, J. Number Theory, 44 (1993), 352-355. Zbl0780.11058MR94k:11125
  7. [L] S. LANG, Algebraic Number Theory, Graduate Texts in Mathematics, Vol. 110, Springer-Verlag, New York, 1986. Zbl0601.12001MR95f:11085
  8. [M] B. MAZUR, Letter to J. Tate, 1987. 
  9. [Ml1] J. MILNE, On a conjecture of Artin and Tate, Annals of Math., 102 (1975), 517-533. Zbl0343.14005MR54 #2659
  10. [Ml2] J. MILNE, Arithmetic Duality Theorems, Academic Press, New York, 1986. Zbl0613.14019MR88e:14028
  11. [Mu] D. MUMFORD, Biextensions of formal groups, in the Proceedings of the Bombay Colloquium on Algebraic Geometry, Tata Institute of Fundamental Research Studies in Mathematics 4, London, Oxford University Press, 1968. 
  12. [MT1] B. MAZUR and J. TATE, Canonical pairing via biextensions, in Arithmetic and Geometry, Progr. Math., Vol. 35 (1983), 195-237, Birkhäuser, Boston-Basel-Stuttgart. Zbl0574.14036MR85j:14081
  13. [MT2] B. MAZUR and J. TATE, Refined conjectures of the Birch and Swinnerton-Dyer type, Duke Math. J., 54/2 (1987), 711-750. Zbl0636.14004MR88k:11039
  14. [MTT] B. MAZUR, J. TATE and J. TEITELBAUM, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84 (1986), 1-84. Zbl0699.14028MR87e:11076
  15. [PV] I.B.S. PASSI and L.R. VERMANI, The associated graded ring of an integral group ring, Math. Proc. Camb. Phil. Soc., 82 (1977), 25-33. Zbl0358.16006MR55 #10550
  16. [S] J. SILVERMAN, Arithmetic of Elliptic Curves, Graduate Texts in Math., Vol. 106, Springer-Verlag, New York, 1986. Zbl0585.14026MR87g:11070
  17. [GA7 I] A. GROTHENDIECK et al., Séminaire de géométrie algébrique du Bois Marie, 1967/1969, Groupes de monodromie en géométrie algébrique, Lecture Notes in mathematics 288, Springer, Berlin-Heidelberg-New York, 1972. Zbl0237.00013
  18. [T1] J. TATE, Duality theorems in Galois cohomology over number fields, in Proc. Intern. Congress Math., Stockholm (1962), 231-241. Zbl0126.07002
  19. [T2] J. TATE, On the conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Séminaire Bourbaki n° 306 (1966). Zbl0199.55604
  20. [T3] J. TATE, The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179-206. Zbl0296.14018MR54 #7380
  21. [T4] J. TATE, Letter to B. Mazur, 1988. 
  22. [T5] J. TATE, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular Functions of One Variable IV, Lecture Notes in Math. 476 (1975), p. 33-53, Springer-Verlag, Berlin-Heidelberg-New York. 
  23. [Tn1] K.-S. TAN, Refined conjectures of the Birch and Swinnerton-Dyer Type, Harvard University, Dept. of Mathematics, Ph. D. Thesis, 1990. 
  24. [Tn2] K.-S. TAN, Modular elements over function fields, Journal of Number Theory, 45 (1993, n° 3), 295-311. Zbl0802.11026MR95d:11158
  25. [Tn3] K.-S. TAN, On the p-adic height pairings, AMS Proceedings on the p-adic Monodromy, to appear. 
  26. [Tn4] K.-S. TAN, On the special values of abelian L-function, submitted to J. Fac. Sci. Univ. Tokyo. Zbl0820.11069
  27. [W1] A. WEIL, Basic Number Theory, Grundl. Math. Wiss. Bd. 144, Springer-Verlag, New York, 1967. Zbl0176.33601
  28. [W2] A. WEIL, Adèles and Algebraic Groups, Birkhauser, Boston, 1982. 
  29. [Z] J.G. ZARHIN, Néron pairing and quasicharacters, Izv. Akad. Nauk. SSSR Ser. Mat. 36 (3), 497-509, 1972. (Math. USSR Izvestija, Vol. 6, No. 3, 491-503). Zbl0254.14012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.