Refined theorems of the Birch and Swinnerton-Dyer type
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 2, page 317-374
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTan, Ki-Seng. "Refined theorems of the Birch and Swinnerton-Dyer type." Annales de l'institut Fourier 45.2 (1995): 317-374. <http://eudml.org/doc/75121>.
@article{Tan1995,
abstract = {In this paper, we generalize the context of the Mazur-Tate conjecture and sharpen, in a certain way, the statement of the conjecture. Our main result will be to establish the truth of a part of these new sharpened conjectures, provided that one assume the truth of the classical Birch and Swinnerton-Dyer conjectures. This is particularly striking in the function field case, where these results can be viewed as being a refinement of the earlier work of Tate and Milne.},
author = {Tan, Ki-Seng},
journal = {Annales de l'institut Fourier},
keywords = {elliptic curve; -function; Birch-Swinnerton-Dyer conjecture; Mazur- Tate conjecture; height pairing; corrected discriminant},
language = {eng},
number = {2},
pages = {317-374},
publisher = {Association des Annales de l'Institut Fourier},
title = {Refined theorems of the Birch and Swinnerton-Dyer type},
url = {http://eudml.org/doc/75121},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Tan, Ki-Seng
TI - Refined theorems of the Birch and Swinnerton-Dyer type
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 2
SP - 317
EP - 374
AB - In this paper, we generalize the context of the Mazur-Tate conjecture and sharpen, in a certain way, the statement of the conjecture. Our main result will be to establish the truth of a part of these new sharpened conjectures, provided that one assume the truth of the classical Birch and Swinnerton-Dyer conjectures. This is particularly striking in the function field case, where these results can be viewed as being a refinement of the earlier work of Tate and Milne.
LA - eng
KW - elliptic curve; -function; Birch-Swinnerton-Dyer conjecture; Mazur- Tate conjecture; height pairing; corrected discriminant
UR - http://eudml.org/doc/75121
ER -
References
top- [AT] E. ARTIN and J. TATE, Class Field Theory, Benjamin, New York, 1967. Zbl0176.33504
- [BS] Z. BOREVICH and I.R. SHAFAREVICH, Number Theorey, English translation, Academic Press, New York, 1966. Zbl0145.04902
- [D] P. DELIGNE, Les constants, etc., Séminaire Delange-Poisot-Poitou, 11e année 19, 1970. Zbl0215.08301
- [G] B. GROSS, On the value of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 35 (1988), 177-197. Zbl0681.12005MR89h:11071
- [GSt] R. GREENBERG and G. STEVENS, p-adic L-functions and p-adic modular forms, Invent. Math., 111 (1993), 407-447. Zbl0778.11034MR93m:11054
- [K] H. KISILEVSKY, Multiplicative independence in function fields, J. Number Theory, 44 (1993), 352-355. Zbl0780.11058MR94k:11125
- [L] S. LANG, Algebraic Number Theory, Graduate Texts in Mathematics, Vol. 110, Springer-Verlag, New York, 1986. Zbl0601.12001MR95f:11085
- [M] B. MAZUR, Letter to J. Tate, 1987.
- [Ml1] J. MILNE, On a conjecture of Artin and Tate, Annals of Math., 102 (1975), 517-533. Zbl0343.14005MR54 #2659
- [Ml2] J. MILNE, Arithmetic Duality Theorems, Academic Press, New York, 1986. Zbl0613.14019MR88e:14028
- [Mu] D. MUMFORD, Biextensions of formal groups, in the Proceedings of the Bombay Colloquium on Algebraic Geometry, Tata Institute of Fundamental Research Studies in Mathematics 4, London, Oxford University Press, 1968.
- [MT1] B. MAZUR and J. TATE, Canonical pairing via biextensions, in Arithmetic and Geometry, Progr. Math., Vol. 35 (1983), 195-237, Birkhäuser, Boston-Basel-Stuttgart. Zbl0574.14036MR85j:14081
- [MT2] B. MAZUR and J. TATE, Refined conjectures of the Birch and Swinnerton-Dyer type, Duke Math. J., 54/2 (1987), 711-750. Zbl0636.14004MR88k:11039
- [MTT] B. MAZUR, J. TATE and J. TEITELBAUM, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84 (1986), 1-84. Zbl0699.14028MR87e:11076
- [PV] I.B.S. PASSI and L.R. VERMANI, The associated graded ring of an integral group ring, Math. Proc. Camb. Phil. Soc., 82 (1977), 25-33. Zbl0358.16006MR55 #10550
- [S] J. SILVERMAN, Arithmetic of Elliptic Curves, Graduate Texts in Math., Vol. 106, Springer-Verlag, New York, 1986. Zbl0585.14026MR87g:11070
- [GA7 I] A. GROTHENDIECK et al., Séminaire de géométrie algébrique du Bois Marie, 1967/1969, Groupes de monodromie en géométrie algébrique, Lecture Notes in mathematics 288, Springer, Berlin-Heidelberg-New York, 1972. Zbl0237.00013
- [T1] J. TATE, Duality theorems in Galois cohomology over number fields, in Proc. Intern. Congress Math., Stockholm (1962), 231-241. Zbl0126.07002
- [T2] J. TATE, On the conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Séminaire Bourbaki n° 306 (1966). Zbl0199.55604
- [T3] J. TATE, The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179-206. Zbl0296.14018MR54 #7380
- [T4] J. TATE, Letter to B. Mazur, 1988.
- [T5] J. TATE, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular Functions of One Variable IV, Lecture Notes in Math. 476 (1975), p. 33-53, Springer-Verlag, Berlin-Heidelberg-New York.
- [Tn1] K.-S. TAN, Refined conjectures of the Birch and Swinnerton-Dyer Type, Harvard University, Dept. of Mathematics, Ph. D. Thesis, 1990.
- [Tn2] K.-S. TAN, Modular elements over function fields, Journal of Number Theory, 45 (1993, n° 3), 295-311. Zbl0802.11026MR95d:11158
- [Tn3] K.-S. TAN, On the p-adic height pairings, AMS Proceedings on the p-adic Monodromy, to appear.
- [Tn4] K.-S. TAN, On the special values of abelian L-function, submitted to J. Fac. Sci. Univ. Tokyo. Zbl0820.11069
- [W1] A. WEIL, Basic Number Theory, Grundl. Math. Wiss. Bd. 144, Springer-Verlag, New York, 1967. Zbl0176.33601
- [W2] A. WEIL, Adèles and Algebraic Groups, Birkhauser, Boston, 1982.
- [Z] J.G. ZARHIN, Néron pairing and quasicharacters, Izv. Akad. Nauk. SSSR Ser. Mat. 36 (3), 497-509, 1972. (Math. USSR Izvestija, Vol. 6, No. 3, 491-503). Zbl0254.14012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.