The modified diagonal cycle on the triple product of a pointed curve

Benedict H. Gross; Chad Schoen

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 3, page 649-679
  • ISSN: 0373-0956

Abstract

top
Let X be a curve over a field k with a rational point e . We define a canonical cycle Δ e Z 2 ( X 3 ) hom . Suppose that k is a number field and that X has semi-stable reduction over the integers of k with fiber components non-singular. We construct a regular model of X 3 and show that the height pairing τ * ( Δ e ) , τ * ' ( Δ e ) is well defined where τ and τ ' are correspondences. The paper ends with a brief discussion of heights and L -functions in the case that X is a modular curve.

How to cite

top

Gross, Benedict H., and Schoen, Chad. "The modified diagonal cycle on the triple product of a pointed curve." Annales de l'institut Fourier 45.3 (1995): 649-679. <http://eudml.org/doc/75133>.

@article{Gross1995,
abstract = {Let $X$ be a curve over a field $k$ with a rational point $e$. We define a canonical cycle $\Delta _e\in Z^2(X^3)_\{\{\rm hom\}\}$. Suppose that $k$ is a number field and that $X$ has semi-stable reduction over the integers of $k$ with fiber components non-singular. We construct a regular model of $X^3$ and show that the height pairing $\langle \tau _*(\Delta _e),\tau ^\{\prime \}_*(\Delta _e)\rangle $ is well defined where $\tau $ and $\tau ^\{\prime \}$ are correspondences. The paper ends with a brief discussion of heights and $L$-functions in the case that $X$ is a modular curve.},
author = {Gross, Benedict H., Schoen, Chad},
journal = {Annales de l'institut Fourier},
keywords = {diagonal cycle; triple product of a pointed curve; regular models; semi-stable reduction; height pairing; -functions; modular curve},
language = {eng},
number = {3},
pages = {649-679},
publisher = {Association des Annales de l'Institut Fourier},
title = {The modified diagonal cycle on the triple product of a pointed curve},
url = {http://eudml.org/doc/75133},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Gross, Benedict H.
AU - Schoen, Chad
TI - The modified diagonal cycle on the triple product of a pointed curve
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 649
EP - 679
AB - Let $X$ be a curve over a field $k$ with a rational point $e$. We define a canonical cycle $\Delta _e\in Z^2(X^3)_{{\rm hom}}$. Suppose that $k$ is a number field and that $X$ has semi-stable reduction over the integers of $k$ with fiber components non-singular. We construct a regular model of $X^3$ and show that the height pairing $\langle \tau _*(\Delta _e),\tau ^{\prime }_*(\Delta _e)\rangle $ is well defined where $\tau $ and $\tau ^{\prime }$ are correspondences. The paper ends with a brief discussion of heights and $L$-functions in the case that $X$ is a modular curve.
LA - eng
KW - diagonal cycle; triple product of a pointed curve; regular models; semi-stable reduction; height pairing; -functions; modular curve
UR - http://eudml.org/doc/75133
ER -

References

top
  1. [Al Kl] A. ALTMANN and S. KLEIMAN, Introduction to Grothendieck Duality Theory, Lect. Notes in Math. 146, Springer-Verlag, New York (1970) Zbl0215.37201MR43 #224
  2. [Be1] A. BEILINSON, Higher regulators and values of L-functions, J. Soviet Math., 30 (1985), 2036-2070. Zbl0588.14013
  3. [Be2] A. BEILINSON, Height pairing between algebraic cycles. In : Current trends in arithmetic algebraic geometry, Contemp. Math., vol. 67 (1987), 1-24. Zbl0624.14005MR89g:11052
  4. [Bl] S. BLOCH, Height pairing for algebraic cycles, J. Pure Appl. Algebra, 34 (1984), 119-145. Zbl0577.14004MR86h:14015
  5. [Ce] G. CERESA, C is not algebraically equivalent to C- in its Jacobian, Annals of Math., 117 (1983), 285-291. Zbl0538.14024MR84f:14005
  6. [Co vG] E. COLOMBO, and B. VAN GEEMEN, Note on curves on a Jacobian, Compositio Math., 88 (1993), 333-353. Zbl0802.14002MR95j:14030
  7. [De1] P. DELIGNE, Théorie de Hodge III, Publ. Math. IHES, 44 (1975), 5-77. Zbl0237.14003
  8. [De2] P. DELIGNE, La conjecture de Weil II, Publ. Math. IHES, 52 (1981), 273-308. 
  9. [De3] P. DELIGNE, Formes modulaires et représentations l-adiques, Sém. Bourbaki, Exp. 355, Springer Lecture Notes, 179 (1969), 139-172. Zbl0206.49901
  10. [DeMu] P. DELIGNE, and D. MUMFORD, The irreducibility of the space of curves of given genus, Publ. Math. IHES, 36 (1969), 75-110. Zbl0181.48803MR41 #6850
  11. [DeRa] P. DELIGNE, and M. RAPOPORT, Les schémas de modules de courbes elliptiques, in : Modular forms of one variable II, Springer Lecture Notes, 349 (1973), 143-316. Zbl0281.14010MR49 #2762
  12. [Des] M. DESCHAMPS, Réduction semi-stable, in : Sém. sur les pinceaux de courbes de genre au moins deux, Astérisque, 86 (1981). Zbl0505.14008
  13. [Fu] W. FULTON, Intersection theory, Springer Ergebnisse 3 Folge, Band 2 (1984). Zbl0541.14005MR85k:14004
  14. [GiSo] H. GILLET, and C. SOULÉ, Intersection theory using Adams operations, Inv. Math., 90 (1987), 243-278. Zbl0632.14009MR89d:14005
  15. [GKu] B. GROSS, and S. KUDLA, Heights and the central critical values of triple product L-functions, Compositio Math., 81 (1992), 143-209. Zbl0807.11027MR93g:11047
  16. [Ha] R. HARTSHORNE, Algebraic Geometry, Springer, 1977. Zbl0367.14001MR57 #3116
  17. [Mi] J.S. MILNE, Étale cohomology, Princeton Univ., Press, 1980. Zbl0433.14012MR81j:14002
  18. [Mu] D. MUMFORD, Rational equivalence of zero cycles on surfaces, J. Math., Kyoto Univ., 9 (1969), 195-204. Zbl0184.46603MR40 #2673
  19. [Né] A. NÉRON, Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math., 82 (1965), 249-331. Zbl0163.15205MR31 #3424
  20. [Sch] A. SCHOLL, Motives for modular forms, Inv. Math., 100 (1990), 419-430. Zbl0760.14002MR91e:11054
  21. [Si] J. SILVERMAN, The arithmetic of elliptic curves, Springer Graduate Texts in Math., 106 (1986). Zbl0585.14026MR87g:11070
  22. [Ta1] J. TATE, Endomorphisms of abelian varieties over finite fields., Inv. Math., 2 (1966), 134-144. Zbl0147.20303MR34 #5829
  23. [Ta2] J. TATE, Conjectures on algebraic cycles in l-adic cohomology. In : Motives, Proc. of Symposia in Pure Math., 55, Part 1 (1994), 71-83. Zbl0814.14009MR95a:14010
  24. [Ve] J-L. VERDIER, Classe d'homologie associée à un cycle, Astérisque, 36-37 (1976), 101-151. Zbl0346.14005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.