The modified diagonal cycle on the triple product of a pointed curve
Benedict H. Gross; Chad Schoen
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 3, page 649-679
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGross, Benedict H., and Schoen, Chad. "The modified diagonal cycle on the triple product of a pointed curve." Annales de l'institut Fourier 45.3 (1995): 649-679. <http://eudml.org/doc/75133>.
@article{Gross1995,
abstract = {Let $X$ be a curve over a field $k$ with a rational point $e$. We define a canonical cycle $\Delta _e\in Z^2(X^3)_\{\{\rm hom\}\}$. Suppose that $k$ is a number field and that $X$ has semi-stable reduction over the integers of $k$ with fiber components non-singular. We construct a regular model of $X^3$ and show that the height pairing $\langle \tau _*(\Delta _e),\tau ^\{\prime \}_*(\Delta _e)\rangle $ is well defined where $\tau $ and $\tau ^\{\prime \}$ are correspondences. The paper ends with a brief discussion of heights and $L$-functions in the case that $X$ is a modular curve.},
author = {Gross, Benedict H., Schoen, Chad},
journal = {Annales de l'institut Fourier},
keywords = {diagonal cycle; triple product of a pointed curve; regular models; semi-stable reduction; height pairing; -functions; modular curve},
language = {eng},
number = {3},
pages = {649-679},
publisher = {Association des Annales de l'Institut Fourier},
title = {The modified diagonal cycle on the triple product of a pointed curve},
url = {http://eudml.org/doc/75133},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Gross, Benedict H.
AU - Schoen, Chad
TI - The modified diagonal cycle on the triple product of a pointed curve
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 649
EP - 679
AB - Let $X$ be a curve over a field $k$ with a rational point $e$. We define a canonical cycle $\Delta _e\in Z^2(X^3)_{{\rm hom}}$. Suppose that $k$ is a number field and that $X$ has semi-stable reduction over the integers of $k$ with fiber components non-singular. We construct a regular model of $X^3$ and show that the height pairing $\langle \tau _*(\Delta _e),\tau ^{\prime }_*(\Delta _e)\rangle $ is well defined where $\tau $ and $\tau ^{\prime }$ are correspondences. The paper ends with a brief discussion of heights and $L$-functions in the case that $X$ is a modular curve.
LA - eng
KW - diagonal cycle; triple product of a pointed curve; regular models; semi-stable reduction; height pairing; -functions; modular curve
UR - http://eudml.org/doc/75133
ER -
References
top- [Al Kl] A. ALTMANN and S. KLEIMAN, Introduction to Grothendieck Duality Theory, Lect. Notes in Math. 146, Springer-Verlag, New York (1970) Zbl0215.37201MR43 #224
- [Be1] A. BEILINSON, Higher regulators and values of L-functions, J. Soviet Math., 30 (1985), 2036-2070. Zbl0588.14013
- [Be2] A. BEILINSON, Height pairing between algebraic cycles. In : Current trends in arithmetic algebraic geometry, Contemp. Math., vol. 67 (1987), 1-24. Zbl0624.14005MR89g:11052
- [Bl] S. BLOCH, Height pairing for algebraic cycles, J. Pure Appl. Algebra, 34 (1984), 119-145. Zbl0577.14004MR86h:14015
- [Ce] G. CERESA, C is not algebraically equivalent to C- in its Jacobian, Annals of Math., 117 (1983), 285-291. Zbl0538.14024MR84f:14005
- [Co vG] E. COLOMBO, and B. VAN GEEMEN, Note on curves on a Jacobian, Compositio Math., 88 (1993), 333-353. Zbl0802.14002MR95j:14030
- [De1] P. DELIGNE, Théorie de Hodge III, Publ. Math. IHES, 44 (1975), 5-77. Zbl0237.14003
- [De2] P. DELIGNE, La conjecture de Weil II, Publ. Math. IHES, 52 (1981), 273-308.
- [De3] P. DELIGNE, Formes modulaires et représentations l-adiques, Sém. Bourbaki, Exp. 355, Springer Lecture Notes, 179 (1969), 139-172. Zbl0206.49901
- [DeMu] P. DELIGNE, and D. MUMFORD, The irreducibility of the space of curves of given genus, Publ. Math. IHES, 36 (1969), 75-110. Zbl0181.48803MR41 #6850
- [DeRa] P. DELIGNE, and M. RAPOPORT, Les schémas de modules de courbes elliptiques, in : Modular forms of one variable II, Springer Lecture Notes, 349 (1973), 143-316. Zbl0281.14010MR49 #2762
- [Des] M. DESCHAMPS, Réduction semi-stable, in : Sém. sur les pinceaux de courbes de genre au moins deux, Astérisque, 86 (1981). Zbl0505.14008
- [Fu] W. FULTON, Intersection theory, Springer Ergebnisse 3 Folge, Band 2 (1984). Zbl0541.14005MR85k:14004
- [GiSo] H. GILLET, and C. SOULÉ, Intersection theory using Adams operations, Inv. Math., 90 (1987), 243-278. Zbl0632.14009MR89d:14005
- [GKu] B. GROSS, and S. KUDLA, Heights and the central critical values of triple product L-functions, Compositio Math., 81 (1992), 143-209. Zbl0807.11027MR93g:11047
- [Ha] R. HARTSHORNE, Algebraic Geometry, Springer, 1977. Zbl0367.14001MR57 #3116
- [Mi] J.S. MILNE, Étale cohomology, Princeton Univ., Press, 1980. Zbl0433.14012MR81j:14002
- [Mu] D. MUMFORD, Rational equivalence of zero cycles on surfaces, J. Math., Kyoto Univ., 9 (1969), 195-204. Zbl0184.46603MR40 #2673
- [Né] A. NÉRON, Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math., 82 (1965), 249-331. Zbl0163.15205MR31 #3424
- [Sch] A. SCHOLL, Motives for modular forms, Inv. Math., 100 (1990), 419-430. Zbl0760.14002MR91e:11054
- [Si] J. SILVERMAN, The arithmetic of elliptic curves, Springer Graduate Texts in Math., 106 (1986). Zbl0585.14026MR87g:11070
- [Ta1] J. TATE, Endomorphisms of abelian varieties over finite fields., Inv. Math., 2 (1966), 134-144. Zbl0147.20303MR34 #5829
- [Ta2] J. TATE, Conjectures on algebraic cycles in l-adic cohomology. In : Motives, Proc. of Symposia in Pure Math., 55, Part 1 (1994), 71-83. Zbl0814.14009MR95a:14010
- [Ve] J-L. VERDIER, Classe d'homologie associée à un cycle, Astérisque, 36-37 (1976), 101-151. Zbl0346.14005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.