On the K -theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case

Patrick Polo

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 3, page 707-720
  • ISSN: 0373-0956

Abstract

top
Let G be a semisimple complex algebraic group and X its flag variety. Let 𝔤 = Lie ( G ) and let U be its enveloping algebra. Let 𝔥 be a Cartan subalgebra of 𝔤 . For μ 𝔥 * , let J μ be the corresponding minimal primitive ideal, let U μ = U / J μ , and let 𝒯 U μ : K 0 ( U m u ) be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras U μ . When μ is regular, Hodges has shown that K 0 ( U μ ) K 0 ( X ) . In this case K 0 ( U μ ) is generated by the classes corresponding to G -linearized line bundles on X , and the value of 𝒯 U μ on these generators was computed by Hodges and Holland, in a special case, and then by Perets and the author, in general. This result is extended here to the singular case.

How to cite

top

Polo, Patrick. "On the $K$-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case." Annales de l'institut Fourier 45.3 (1995): 707-720. <http://eudml.org/doc/75135>.

@article{Polo1995,
abstract = {Let $G$ be a semisimple complex algebraic group and $X$ its flag variety. Let $\{\frak g\}=\{\rm Lie\}(G)$ and let $U$ be its enveloping algebra. Let $\{\frak h\}$ be a Cartan subalgebra of $\{\frak g\}$. For $\mu \in \{\frak h\}^*$, let $J_\mu $ be the corresponding minimal primitive ideal, let $U_\mu =U/J_\mu $, and let $\{\cal T\}_\{U_\mu \}:K_0(U_mu)\rightarrow \{\Bbb C\}$ be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the $\{\Bbb C\}$-algebras $U_\mu $. When $\mu $ is regular, Hodges has shown that $K_0(U_\mu )\cong K_0(X)$. In this case $K_0(U_\mu )$ is generated by the classes corresponding to $G$-linearized line bundles on $X$, and the value of $\{\cal T\}_\{U_\mu \}$ on these generators was computed by Hodges and Holland, in a special case, and then by Perets and the author, in general. This result is extended here to the singular case.},
author = {Polo, Patrick},
journal = {Annales de l'institut Fourier},
keywords = {Hattori-Stallings trace; enveloping algebras; semisimple Lie algebras; minimal primitive ideal},
language = {eng},
number = {3},
pages = {707-720},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the $K$-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case},
url = {http://eudml.org/doc/75135},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Polo, Patrick
TI - On the $K$-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 707
EP - 720
AB - Let $G$ be a semisimple complex algebraic group and $X$ its flag variety. Let ${\frak g}={\rm Lie}(G)$ and let $U$ be its enveloping algebra. Let ${\frak h}$ be a Cartan subalgebra of ${\frak g}$. For $\mu \in {\frak h}^*$, let $J_\mu $ be the corresponding minimal primitive ideal, let $U_\mu =U/J_\mu $, and let ${\cal T}_{U_\mu }:K_0(U_mu)\rightarrow {\Bbb C}$ be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the ${\Bbb C}$-algebras $U_\mu $. When $\mu $ is regular, Hodges has shown that $K_0(U_\mu )\cong K_0(X)$. In this case $K_0(U_\mu )$ is generated by the classes corresponding to $G$-linearized line bundles on $X$, and the value of ${\cal T}_{U_\mu }$ on these generators was computed by Hodges and Holland, in a special case, and then by Perets and the author, in general. This result is extended here to the singular case.
LA - eng
KW - Hattori-Stallings trace; enveloping algebras; semisimple Lie algebras; minimal primitive ideal
UR - http://eudml.org/doc/75135
ER -

References

top
  1. [1] H. BASS, Algebraic K-theory, Benjamin, 1968. Zbl0174.30302MR40 #2736
  2. [2] H. BASS, Euler Characteristics and Characters of Discrete Groups, Invent. Math., 35 (1976), 155-196. Zbl0365.20008MR55 #5764
  3. [3] A. BEILINSON, J. BERNSTEIN, Localisation de g-modules, C. R. Acad. Sc. Paris, 292 (1981), 15-18. Zbl0476.14019MR82k:14015
  4. [4] J. BERNSTEIN, Trace in Categories, pp. 417-423 in : Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (A. Connes et al., eds.), Birkhäuser, 1990. Zbl0747.17007MR92d:17010
  5. [5] J. BERNSTEIN, S.I. GELFAND, Tensor products of finite and infinite dimensional representations of semisimple Lie algebras, Compositio Math., 41 (1980), 245-285. Zbl0445.17006MR82c:17003
  6. [6] A. BOREL et al., Algebraic D-modules, Academic Press, 1987. Zbl0642.32001MR89g:32014
  7. [7] N. BOURBAKI, Groupes et algèbres de Lie, Chap. IV-VI, Hermann, 1968. 
  8. [8] M. DEMAZURE, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math., 21 (1973), 287-301. Zbl0269.22010MR49 #7268
  9. [9] J. DIXMIER, Algèbres Enveloppantes, Gauthier-Villars, 1974. Zbl0308.17007MR58 #16803a
  10. [10] H. HECHT, D. MILIČIĆ, W. SCHMID, J.A. WOLF, Localization and standard modules for real semisimple Lie groups I : The duality theorem, Invent. Math., 90 (1987), 297-332. Zbl0699.22022MR89e:22025
  11. [11] T.J. HODGES, K-Theory of D-modules and primitive factors of enveloping algebras of semisimple Lie algebras, Bull. Sc. Math., 113 (1989), 85-88. Zbl0672.17008MR90b:17022
  12. [12] T.J. HODGES, Morita Equivalence of Primitive Factors of U(sl(2)), pp. 175-179 in : Kazhdan-Lusztig Theory and Related Topics (V. Deodhar, ed.), Contemporary Math. 139 (1992). Zbl0814.17008MR94e:17007
  13. [13] T.J. HODGES, M.P. HOLLAND, Chern characters, reduced ranks and D-modules on the flag variety, Proc. Edinburgh Math. Soc., 37 (1994), 477-482. Zbl0802.17005MR95m:17013
  14. [14] T.J. HODGES, S.P. SMITH, On the global dimension of certain primitive factors of the enveloping algebra of a semi-simple Lie algebra, J. London Math. Soc., 32 (1985), 411-418. Zbl0588.17009MR87g:17015
  15. [15] M.P. HOLLAND, P. POLO, K-theory of twisted differential operators on flag varieties, preprint (Dec. 1994). Zbl0840.22026
  16. [16] J.C. JANTZEN, Moduln mit einem höchsten Gewicht, Lecture Notes in Math. 750, Springer-Verlag, 1979. Zbl0426.17001MR81m:17011
  17. [17] J.C. JANTZEN, Einhüllende Algebren halbeinfacher Lie-Algebren, Springer-Verlag, 1983. Zbl0541.17001
  18. [18] A. JOSEPH, J.T. STAFFORD, Modules of t-finite vectors over semi-simple Lie algebras, Proc. London Math. Soc., 49 (1984), 361-384. Zbl0543.17004MR86a:17004
  19. [19] M. KASHIWARA, Representation theory and D-modules on flag varieties, pp. 55-109 in : Orbites unipotentes et représentations III (éd. M. Andler), Astérisque, 173-174 (1989). Zbl0705.22010MR90k:17029
  20. [20] R. MARLIN, Anneaux de Grothendieck des variétés de drapeaux, Bull. Soc. Math. France, 104 (1976), 337-348. Zbl0375.14012MR55 #10474
  21. [21] G.S. PERETS, P. POLO, On the Hattori-Stallings trace for certain primitive factors of enveloping algebras of semisimple Lie algebras, Math. Z. (to appear). Zbl0823.17014
  22. [22] D. QUILLEN, Higher algebraic K-theory, pp. 85-147 in : Algebraic K-Theory I (H. Bass, ed.), Lecture Notes in Math. 341, Springer-Verlag, 1973. Zbl0292.18004MR49 #2895
  23. [23] W. SOERGEL, Universelle versus relative Einhüllende : Eine geometrische Untersuchung von Quotienten von universellen Einhüllende halbeinfacher Lie-Algebren, Math. Annalen, 284 (1989), 177-198. Zbl0649.17012MR90k:17034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.