On the -theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 3, page 707-720
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPolo, Patrick. "On the $K$-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case." Annales de l'institut Fourier 45.3 (1995): 707-720. <http://eudml.org/doc/75135>.
@article{Polo1995,
abstract = {Let $G$ be a semisimple complex algebraic group and $X$ its flag variety. Let $\{\frak g\}=\{\rm Lie\}(G)$ and let $U$ be its enveloping algebra. Let $\{\frak h\}$ be a Cartan subalgebra of $\{\frak g\}$. For $\mu \in \{\frak h\}^*$, let $J_\mu $ be the corresponding minimal primitive ideal, let $U_\mu =U/J_\mu $, and let $\{\cal T\}_\{U_\mu \}:K_0(U_mu)\rightarrow \{\Bbb C\}$ be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the $\{\Bbb C\}$-algebras $U_\mu $. When $\mu $ is regular, Hodges has shown that $K_0(U_\mu )\cong K_0(X)$. In this case $K_0(U_\mu )$ is generated by the classes corresponding to $G$-linearized line bundles on $X$, and the value of $\{\cal T\}_\{U_\mu \}$ on these generators was computed by Hodges and Holland, in a special case, and then by Perets and the author, in general. This result is extended here to the singular case.},
author = {Polo, Patrick},
journal = {Annales de l'institut Fourier},
keywords = {Hattori-Stallings trace; enveloping algebras; semisimple Lie algebras; minimal primitive ideal},
language = {eng},
number = {3},
pages = {707-720},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the $K$-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case},
url = {http://eudml.org/doc/75135},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Polo, Patrick
TI - On the $K$-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 707
EP - 720
AB - Let $G$ be a semisimple complex algebraic group and $X$ its flag variety. Let ${\frak g}={\rm Lie}(G)$ and let $U$ be its enveloping algebra. Let ${\frak h}$ be a Cartan subalgebra of ${\frak g}$. For $\mu \in {\frak h}^*$, let $J_\mu $ be the corresponding minimal primitive ideal, let $U_\mu =U/J_\mu $, and let ${\cal T}_{U_\mu }:K_0(U_mu)\rightarrow {\Bbb C}$ be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the ${\Bbb C}$-algebras $U_\mu $. When $\mu $ is regular, Hodges has shown that $K_0(U_\mu )\cong K_0(X)$. In this case $K_0(U_\mu )$ is generated by the classes corresponding to $G$-linearized line bundles on $X$, and the value of ${\cal T}_{U_\mu }$ on these generators was computed by Hodges and Holland, in a special case, and then by Perets and the author, in general. This result is extended here to the singular case.
LA - eng
KW - Hattori-Stallings trace; enveloping algebras; semisimple Lie algebras; minimal primitive ideal
UR - http://eudml.org/doc/75135
ER -
References
top- [1] H. BASS, Algebraic K-theory, Benjamin, 1968. Zbl0174.30302MR40 #2736
- [2] H. BASS, Euler Characteristics and Characters of Discrete Groups, Invent. Math., 35 (1976), 155-196. Zbl0365.20008MR55 #5764
- [3] A. BEILINSON, J. BERNSTEIN, Localisation de g-modules, C. R. Acad. Sc. Paris, 292 (1981), 15-18. Zbl0476.14019MR82k:14015
- [4] J. BERNSTEIN, Trace in Categories, pp. 417-423 in : Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (A. Connes et al., eds.), Birkhäuser, 1990. Zbl0747.17007MR92d:17010
- [5] J. BERNSTEIN, S.I. GELFAND, Tensor products of finite and infinite dimensional representations of semisimple Lie algebras, Compositio Math., 41 (1980), 245-285. Zbl0445.17006MR82c:17003
- [6] A. BOREL et al., Algebraic D-modules, Academic Press, 1987. Zbl0642.32001MR89g:32014
- [7] N. BOURBAKI, Groupes et algèbres de Lie, Chap. IV-VI, Hermann, 1968.
- [8] M. DEMAZURE, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math., 21 (1973), 287-301. Zbl0269.22010MR49 #7268
- [9] J. DIXMIER, Algèbres Enveloppantes, Gauthier-Villars, 1974. Zbl0308.17007MR58 #16803a
- [10] H. HECHT, D. MILIČIĆ, W. SCHMID, J.A. WOLF, Localization and standard modules for real semisimple Lie groups I : The duality theorem, Invent. Math., 90 (1987), 297-332. Zbl0699.22022MR89e:22025
- [11] T.J. HODGES, K-Theory of D-modules and primitive factors of enveloping algebras of semisimple Lie algebras, Bull. Sc. Math., 113 (1989), 85-88. Zbl0672.17008MR90b:17022
- [12] T.J. HODGES, Morita Equivalence of Primitive Factors of U(sl(2)), pp. 175-179 in : Kazhdan-Lusztig Theory and Related Topics (V. Deodhar, ed.), Contemporary Math. 139 (1992). Zbl0814.17008MR94e:17007
- [13] T.J. HODGES, M.P. HOLLAND, Chern characters, reduced ranks and D-modules on the flag variety, Proc. Edinburgh Math. Soc., 37 (1994), 477-482. Zbl0802.17005MR95m:17013
- [14] T.J. HODGES, S.P. SMITH, On the global dimension of certain primitive factors of the enveloping algebra of a semi-simple Lie algebra, J. London Math. Soc., 32 (1985), 411-418. Zbl0588.17009MR87g:17015
- [15] M.P. HOLLAND, P. POLO, K-theory of twisted differential operators on flag varieties, preprint (Dec. 1994). Zbl0840.22026
- [16] J.C. JANTZEN, Moduln mit einem höchsten Gewicht, Lecture Notes in Math. 750, Springer-Verlag, 1979. Zbl0426.17001MR81m:17011
- [17] J.C. JANTZEN, Einhüllende Algebren halbeinfacher Lie-Algebren, Springer-Verlag, 1983. Zbl0541.17001
- [18] A. JOSEPH, J.T. STAFFORD, Modules of t-finite vectors over semi-simple Lie algebras, Proc. London Math. Soc., 49 (1984), 361-384. Zbl0543.17004MR86a:17004
- [19] M. KASHIWARA, Representation theory and D-modules on flag varieties, pp. 55-109 in : Orbites unipotentes et représentations III (éd. M. Andler), Astérisque, 173-174 (1989). Zbl0705.22010MR90k:17029
- [20] R. MARLIN, Anneaux de Grothendieck des variétés de drapeaux, Bull. Soc. Math. France, 104 (1976), 337-348. Zbl0375.14012MR55 #10474
- [21] G.S. PERETS, P. POLO, On the Hattori-Stallings trace for certain primitive factors of enveloping algebras of semisimple Lie algebras, Math. Z. (to appear). Zbl0823.17014
- [22] D. QUILLEN, Higher algebraic K-theory, pp. 85-147 in : Algebraic K-Theory I (H. Bass, ed.), Lecture Notes in Math. 341, Springer-Verlag, 1973. Zbl0292.18004MR49 #2895
- [23] W. SOERGEL, Universelle versus relative Einhüllende : Eine geometrische Untersuchung von Quotienten von universellen Einhüllende halbeinfacher Lie-Algebren, Math. Annalen, 284 (1989), 177-198. Zbl0649.17012MR90k:17034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.