Fixed points for reductive group actions on acyclic varieties

Martin Fankhauser

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 5, page 1249-1281
  • ISSN: 0373-0956

Abstract

top
Let X be a smooth, affine complex variety, which, considered as a complex manifold, has the singular -cohomology of a point. Suppose that G is a complex algebraic group acting algebraically on X . Our main results are the following: if G is semi-simple, then the generic fiber of the quotient map π : X X / / G contains a dense orbit. If G is connected and reductive, then the action has fixed points if dim X / / G 3 .

How to cite

top

Fankhauser, Martin. "Fixed points for reductive group actions on acyclic varieties." Annales de l'institut Fourier 45.5 (1995): 1249-1281. <http://eudml.org/doc/75159>.

@article{Fankhauser1995,
abstract = {Let $X$ be a smooth, affine complex variety, which, considered as a complex manifold, has the singular $\{\Bbb Z\}$-cohomology of a point. Suppose that $G$ is a complex algebraic group acting algebraically on $X$. Our main results are the following: if $G$ is semi-simple, then the generic fiber of the quotient map $\pi :X\rightarrow X/\!\!/G$ contains a dense orbit. If $G$ is connected and reductive, then the action has fixed points if $\{\rm dim\}\,X/\!\!/G\le 3$.},
author = {Fankhauser, Martin},
journal = {Annales de l'institut Fourier},
keywords = {action of complex algebraic group; quotient; fixed points},
language = {eng},
number = {5},
pages = {1249-1281},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fixed points for reductive group actions on acyclic varieties},
url = {http://eudml.org/doc/75159},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Fankhauser, Martin
TI - Fixed points for reductive group actions on acyclic varieties
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1249
EP - 1281
AB - Let $X$ be a smooth, affine complex variety, which, considered as a complex manifold, has the singular ${\Bbb Z}$-cohomology of a point. Suppose that $G$ is a complex algebraic group acting algebraically on $X$. Our main results are the following: if $G$ is semi-simple, then the generic fiber of the quotient map $\pi :X\rightarrow X/\!\!/G$ contains a dense orbit. If $G$ is connected and reductive, then the action has fixed points if ${\rm dim}\,X/\!\!/G\le 3$.
LA - eng
KW - action of complex algebraic group; quotient; fixed points
UR - http://eudml.org/doc/75159
ER -

References

top
  1. [Ba] H. BASS, A non-triangular action of Ga on A3, Jour. Pure Appl. Alg., 33 (1984), 1-5. Zbl0555.14019MR85j:14086
  2. [BdS] A. BOREL and J. de SIEBENTHAL, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helvetici, 23 (1949), 200-221. Zbl0034.30701MR11,326d
  3. [Bo] N. BOURBAKI, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968. 
  4. [Br] G.E. BREDON, Introduction to compact transformation groups, pure and applied mathematics, Volume 46, Academic Press, New York and London, 1972. Zbl0246.57017MR54 #1265
  5. [El] A.G. ELASHVILI, Canonical form and stationary subalgebras of points of general position for simple linear groups, Functional Analysis and its Applications, 6 (1972), 44-53. Zbl0252.22015MR46 #3689
  6. [Fa] M. FANKHAUSER, Reductive Group Actions on Acyclic Varieties, Thesis, Basel, 1994. 
  7. [Hs] W.-Y. HSIANG, On the Geometric Weight System of Differentiable Compact Transformation Groups on Acyclic Manifolds, Inventiones Math., 12 (1971), 35-47. Zbl0217.49401MR46 #916
  8. [HH70] W.-C. HSIANG and W.-Y. HSIANG, Differentiable actions of compact connected classical groups : II, Annals of Mathematics, 92 (1970), 189-223. Zbl0205.53902MR42 #420
  9. [HH74] W.-C. HSIANG and W.-Y. HSIANG, Differentiable actions of compact connected Lie groups : III, Annals of Mathematics, 99 (1974), 220-256. Zbl0285.57026MR49 #11550
  10. [HS82] W.-Y. HSIANG and E. STRAUME, Actions of compact connected Lie Groups with few orbit types, J. Reine Angew. Math., 334 (1982), 1-26. Zbl0476.22010MR83m:57032
  11. [HS86] W.-Y. HSIANG and E. STRAUME, Actions of compact connected Lie groups on acyclic manifolds with low dimensional orbit spaces, J. Reine Angew. Math., 369 (1986), 21-39. Zbl0583.57025MR87m:57041
  12. [Hu] J. E. HUMPHREYS, Linear Algebraic Groups, GTM 21, Springer-Verlag, New York-Heidelberg-Berlin, 1987. 
  13. [Kr84] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, band D1, Vieweg, Braunschweig, 1984. Zbl0569.14003MR86j:14006
  14. [Kr89a] H. KRAFT, G-vector bundles and the linearization problem, Contemporary Mathematics, 10 (1989), 111-123. Zbl0703.14009MR90j:14062
  15. [Kr89b] H. KRAFT, Algebraic automorphisms of affine space in : Topological Methods in Algebraic Transformation Groups, Progress in Mathematics, Volume 80, Birkhäuser-Verlag, Boston-Basel-Berlin, 1989, pp. 81-106. Zbl0719.14030MR91g:14044
  16. [KP] H. KRAFT and V.L. POPOV, Semisimple group actions on three dimensional affine space are linear, Comment. Math. Helvetici, 60 (1985), 466-479. Zbl0645.14020MR87a:14039
  17. [KS] H. KRAFT and G. SCHWARZ, Reductive group actions with one-dimensional quotient, Publications Mathématiques IHES, 76 (1992), 1-97. Zbl0783.14026MR94e:14065
  18. [Lu] D. LUNA, Slices étales, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105. Zbl0286.14014MR49 #7269
  19. [Ol] R. OLIVER, Weight systems for SO(3)-actions, Annals of Mathematics, 110 (1979), 227-241. Zbl0465.57017MR80m:57036
  20. [PR] T. PETRIE and J.D. RANDALL, Finite-order algebraic automorphisms of affine varieties, Comment. Math. Helvetici, 61 (1986), 203-221. Zbl0612.14046MR88a:57073
  21. [SK] M. SATO and T. KIMURA, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155. Zbl0321.14030MR55 #3341
  22. [Sch] G.W. SCHWARZ, Exotic algebraic group actions, C R. Acad. Sci. Paris, 309 (1989), 89-94. Zbl0688.14040MR91b:14066
  23. [Ve] J.-L. VERDIER, Caractéristique d'Euler-Poincaré, Bull. Soc. Math. France, 176 (1973), 441-445. Zbl0302.57007MR50 #8580
  24. [Vi] È.B. VINBERG, The Weyl Group of a graded Lie Algebra, Izv. Akad. Nauk SSSR, 40 (1976), 463-495. Zbl0371.20041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.