Duality theorems for Hardy and Bergman spaces on convex domains of finite type in n

Steven G. Krantz; Song-Ying Li

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 5, page 1305-1327
  • ISSN: 0373-0956

Abstract

top
We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in n -dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.

How to cite

top

Krantz, Steven G., and Li, Song-Ying. "Duality theorems for Hardy and Bergman spaces on convex domains of finite type in ${\mathbb {C}}^n$." Annales de l'institut Fourier 45.5 (1995): 1305-1327. <http://eudml.org/doc/75161>.

@article{Krantz1995,
abstract = {We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in $n$-dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.},
author = {Krantz, Steven G., Li, Song-Ying},
journal = {Annales de l'institut Fourier},
keywords = {Bloch; BMO; convex domains of finite type},
language = {eng},
number = {5},
pages = {1305-1327},
publisher = {Association des Annales de l'Institut Fourier},
title = {Duality theorems for Hardy and Bergman spaces on convex domains of finite type in $\{\mathbb \{C\}\}^n$},
url = {http://eudml.org/doc/75161},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Krantz, Steven G.
AU - Li, Song-Ying
TI - Duality theorems for Hardy and Bergman spaces on convex domains of finite type in ${\mathbb {C}}^n$
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1305
EP - 1327
AB - We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in $n$-dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.
LA - eng
KW - Bloch; BMO; convex domains of finite type
UR - http://eudml.org/doc/75161
ER -

References

top
  1. [BA] S. ROSS BARKER, Two theorems on boundary values of analytic functions, Proc. A.M.S., 68 (1978), 54-58. Zbl0378.32011MR58 #17211
  2. [BEA] F. BEATROUS, Lp estimates for extensions of holomorphic functions, Michigan Math. J., 32 (1985), 361-380. Zbl0584.32024MR87b:32023
  3. [BL] F. BEATROUS and S.-Y. LI, On the boundedness and Compactness of operators of Hankel type, J. Funct. Anal., vol. 111 (1993), 350-379. Zbl0793.47022MR94b:47033
  4. [B] H. P. BOAS, The Szegö projection, Sobolev estimates in the regular domain, Trans. A.M.S., 300 (1987), 109-132. Zbl0622.32006
  5. [BEL] S. BELL, Extendibility of Bergman kernel function, Complex analysis II, Lecture Notes in Math., 1276, 33-41, Berlin-Heidelberg-New York. Zbl0626.32028MR89b:32032
  6. [C] D. CATLIN, Subelliptic estimates for the ∂-Neumann problem, Ann. Math., 126 (1987), 131-192. Zbl0627.32013MR88i:32025
  7. [CW] R. COIFMAN and G. WEISS, Extensions of Hardy spaces and their use in analysis, Bulletin A.M.S., 83 (1977), 569-643. Zbl0358.30023MR56 #6264
  8. [CHE] L. CHEN, Ph.D. Thesis, Univ. of California at Irvine, 1994. 
  9. [CHR] M. CHRIST, Lectures on Singular Integral Operators, Conference Board of Mathematical Sciences, American Mathematical Society, Providence, 1990. Zbl0745.42008
  10. [COU] B. COUPET, Régularité d'applications holomorphes sur des variétés totalement réelles, Thèse, Université de Provence, 1987. 
  11. [CRW] R. COIFMAN, R. ROCHBERG, and G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. Zbl0326.32011MR54 #843
  12. [DAF] G. DAFNI, Hardy spaces on some pseudoconvex domains, Jour. Geometric Analysis, (1995). Zbl0802.32012
  13. [F] C. FEFFERMAN, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 1-65. Zbl0289.32012MR50 #2562
  14. [FS] C. FEFFERMAN and E. M. STEIN, Hp spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  15. [H] L. HÖRMANDER, Lp estimates for pluri-subharmonic functions, Math. Scand., 20 (1967), 65-78. Zbl0156.12201
  16. [KER] N. KERZMAN, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158. 
  17. [K1] S. KRANTZ, Function Theory of Several Complex Variables, 2nd. ed., Wadsworth, Belmont, 1992. Zbl0776.32001MR93c:32001
  18. [K2] S. KRANTZ, Invariant metrics and the boundary behavior of holomorphic functions, Jour. of Geometric Analysis, 1 (1991), 71-97. Zbl0728.32002MR92f:32007
  19. [K3] S. KRANTZ, Holomorphic functions of bounded mean oscillation and mapping properties of the Szegö projection, Duke Math. J., 47 (1980), 743-761. Zbl0456.32004MR82i:32010
  20. [KL1] S. KRANTZ and S.-Y. LI, A note on Hardy spaces and functions of bounded mean oscillation on domains in ℂn, Michigan Math. Jour., 41 (1994), 51-72. Zbl0802.32013MR95f:32008
  21. [KL2] S. KRANTZ and S.-Y. LI, On the Decomposition Theorems for Hardy Spaces in Domains in ℂn and Applications, J. of Fourier Anal. and Appl., to appear. Zbl0886.32003
  22. [MCN1] J. MCNEAL, Convex domains of finite type, Jour. Funct. Anal., 108 (1992), 361-373. Zbl0777.31007MR93h:32020
  23. [MCN2] J. MCNEAL, Estimates on the Bergman kernels of convex domains, Advances in Math., 109 (1994), 108-139. Zbl0816.32018MR95k:32023
  24. [MS1] J. D. MCNEAL and E. M. STEIN, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., 73 (1994), 177-199. Zbl0801.32008MR94k:32037
  25. [MS2] J. D. MCNEAL and E. M. STEIN, The Szegö projection on convex domains, preprint. Zbl0948.32004
  26. [NSW] A. NAGEL, E. M. STEIN, and S. WAINGER, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155 (1985), 103-147. Zbl0578.32044MR86k:46049
  27. [NRSW] A. NAGEL, J.P. ROSAY, E.M. STEIN, and S. WAINGER, Estimates for the Bergman and Szegö kernels in ℂ2, Ann. Math., 129 (1989), 113-149. Zbl0667.32016MR90g:32028
  28. [ST1] E.M. STEIN, Singular integral and differentiability properties of functions, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
  29. [ST2] E. M. STEIN, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972. Zbl0242.32005MR57 #12890

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.