Duality theorems for Hardy and Bergman spaces on convex domains of finite type in
Steven G. Krantz; Song-Ying Li
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 5, page 1305-1327
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKrantz, Steven G., and Li, Song-Ying. "Duality theorems for Hardy and Bergman spaces on convex domains of finite type in ${\mathbb {C}}^n$." Annales de l'institut Fourier 45.5 (1995): 1305-1327. <http://eudml.org/doc/75161>.
@article{Krantz1995,
abstract = {We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in $n$-dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.},
author = {Krantz, Steven G., Li, Song-Ying},
journal = {Annales de l'institut Fourier},
keywords = {Bloch; BMO; convex domains of finite type},
language = {eng},
number = {5},
pages = {1305-1327},
publisher = {Association des Annales de l'Institut Fourier},
title = {Duality theorems for Hardy and Bergman spaces on convex domains of finite type in $\{\mathbb \{C\}\}^n$},
url = {http://eudml.org/doc/75161},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Krantz, Steven G.
AU - Li, Song-Ying
TI - Duality theorems for Hardy and Bergman spaces on convex domains of finite type in ${\mathbb {C}}^n$
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1305
EP - 1327
AB - We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in $n$-dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.
LA - eng
KW - Bloch; BMO; convex domains of finite type
UR - http://eudml.org/doc/75161
ER -
References
top- [BA] S. ROSS BARKER, Two theorems on boundary values of analytic functions, Proc. A.M.S., 68 (1978), 54-58. Zbl0378.32011MR58 #17211
- [BEA] F. BEATROUS, Lp estimates for extensions of holomorphic functions, Michigan Math. J., 32 (1985), 361-380. Zbl0584.32024MR87b:32023
- [BL] F. BEATROUS and S.-Y. LI, On the boundedness and Compactness of operators of Hankel type, J. Funct. Anal., vol. 111 (1993), 350-379. Zbl0793.47022MR94b:47033
- [B] H. P. BOAS, The Szegö projection, Sobolev estimates in the regular domain, Trans. A.M.S., 300 (1987), 109-132. Zbl0622.32006
- [BEL] S. BELL, Extendibility of Bergman kernel function, Complex analysis II, Lecture Notes in Math., 1276, 33-41, Berlin-Heidelberg-New York. Zbl0626.32028MR89b:32032
- [C] D. CATLIN, Subelliptic estimates for the ∂-Neumann problem, Ann. Math., 126 (1987), 131-192. Zbl0627.32013MR88i:32025
- [CW] R. COIFMAN and G. WEISS, Extensions of Hardy spaces and their use in analysis, Bulletin A.M.S., 83 (1977), 569-643. Zbl0358.30023MR56 #6264
- [CHE] L. CHEN, Ph.D. Thesis, Univ. of California at Irvine, 1994.
- [CHR] M. CHRIST, Lectures on Singular Integral Operators, Conference Board of Mathematical Sciences, American Mathematical Society, Providence, 1990. Zbl0745.42008
- [COU] B. COUPET, Régularité d'applications holomorphes sur des variétés totalement réelles, Thèse, Université de Provence, 1987.
- [CRW] R. COIFMAN, R. ROCHBERG, and G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. Zbl0326.32011MR54 #843
- [DAF] G. DAFNI, Hardy spaces on some pseudoconvex domains, Jour. Geometric Analysis, (1995). Zbl0802.32012
- [F] C. FEFFERMAN, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 1-65. Zbl0289.32012MR50 #2562
- [FS] C. FEFFERMAN and E. M. STEIN, Hp spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
- [H] L. HÖRMANDER, Lp estimates for pluri-subharmonic functions, Math. Scand., 20 (1967), 65-78. Zbl0156.12201
- [KER] N. KERZMAN, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158.
- [K1] S. KRANTZ, Function Theory of Several Complex Variables, 2nd. ed., Wadsworth, Belmont, 1992. Zbl0776.32001MR93c:32001
- [K2] S. KRANTZ, Invariant metrics and the boundary behavior of holomorphic functions, Jour. of Geometric Analysis, 1 (1991), 71-97. Zbl0728.32002MR92f:32007
- [K3] S. KRANTZ, Holomorphic functions of bounded mean oscillation and mapping properties of the Szegö projection, Duke Math. J., 47 (1980), 743-761. Zbl0456.32004MR82i:32010
- [KL1] S. KRANTZ and S.-Y. LI, A note on Hardy spaces and functions of bounded mean oscillation on domains in ℂn, Michigan Math. Jour., 41 (1994), 51-72. Zbl0802.32013MR95f:32008
- [KL2] S. KRANTZ and S.-Y. LI, On the Decomposition Theorems for Hardy Spaces in Domains in ℂn and Applications, J. of Fourier Anal. and Appl., to appear. Zbl0886.32003
- [MCN1] J. MCNEAL, Convex domains of finite type, Jour. Funct. Anal., 108 (1992), 361-373. Zbl0777.31007MR93h:32020
- [MCN2] J. MCNEAL, Estimates on the Bergman kernels of convex domains, Advances in Math., 109 (1994), 108-139. Zbl0816.32018MR95k:32023
- [MS1] J. D. MCNEAL and E. M. STEIN, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., 73 (1994), 177-199. Zbl0801.32008MR94k:32037
- [MS2] J. D. MCNEAL and E. M. STEIN, The Szegö projection on convex domains, preprint. Zbl0948.32004
- [NSW] A. NAGEL, E. M. STEIN, and S. WAINGER, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155 (1985), 103-147. Zbl0578.32044MR86k:46049
- [NRSW] A. NAGEL, J.P. ROSAY, E.M. STEIN, and S. WAINGER, Estimates for the Bergman and Szegö kernels in ℂ2, Ann. Math., 129 (1989), 113-149. Zbl0667.32016MR90g:32028
- [ST1] E.M. STEIN, Singular integral and differentiability properties of functions, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
- [ST2] E. M. STEIN, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972. Zbl0242.32005MR57 #12890
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.