Scattering theory for 3-particle systems in constant magnetic fields : dispersive case

Christian Gérard; Izabella Łaba

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 3, page 801-876
  • ISSN: 0373-0956

Abstract

top
We develop a scattering theory for quantum systems of three charged particles in a constant magnetic field. For such systems, we generalize our earlier results in that we make no additional assumptions on the electric charges of subsystems. The main difficulty is the analysis of the scattering channels corresponding to the motion of the bound states of the neutral subsystems in the directions transversal to the field. The effective kinetic energy of this motion is given by certain dispersive Hamiltonians; therefore we refer to this case as dispersive. Under suitable assumptions on the regularity of the eigenvalues of the reduced Hamiltonians, we obtain the Mourre estimate for general long-range systems, and asymptotic completeness for short-range and Coulomb systems.

How to cite

top

Gérard, Christian, and Łaba, Izabella. "Scattering theory for 3-particle systems in constant magnetic fields : dispersive case." Annales de l'institut Fourier 46.3 (1996): 801-876. <http://eudml.org/doc/75196>.

@article{Gérard1996,
abstract = {We develop a scattering theory for quantum systems of three charged particles in a constant magnetic field. For such systems, we generalize our earlier results in that we make no additional assumptions on the electric charges of subsystems. The main difficulty is the analysis of the scattering channels corresponding to the motion of the bound states of the neutral subsystems in the directions transversal to the field. The effective kinetic energy of this motion is given by certain dispersive Hamiltonians; therefore we refer to this case as dispersive. Under suitable assumptions on the regularity of the eigenvalues of the reduced Hamiltonians, we obtain the Mourre estimate for general long-range systems, and asymptotic completeness for short-range and Coulomb systems.},
author = {Gérard, Christian, Łaba, Izabella},
journal = {Annales de l'institut Fourier},
keywords = {magnetic Hamiltonians; asymptotic completeness},
language = {eng},
number = {3},
pages = {801-876},
publisher = {Association des Annales de l'Institut Fourier},
title = {Scattering theory for 3-particle systems in constant magnetic fields : dispersive case},
url = {http://eudml.org/doc/75196},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Gérard, Christian
AU - Łaba, Izabella
TI - Scattering theory for 3-particle systems in constant magnetic fields : dispersive case
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 3
SP - 801
EP - 876
AB - We develop a scattering theory for quantum systems of three charged particles in a constant magnetic field. For such systems, we generalize our earlier results in that we make no additional assumptions on the electric charges of subsystems. The main difficulty is the analysis of the scattering channels corresponding to the motion of the bound states of the neutral subsystems in the directions transversal to the field. The effective kinetic energy of this motion is given by certain dispersive Hamiltonians; therefore we refer to this case as dispersive. Under suitable assumptions on the regularity of the eigenvalues of the reduced Hamiltonians, we obtain the Mourre estimate for general long-range systems, and asymptotic completeness for short-range and Coulomb systems.
LA - eng
KW - magnetic Hamiltonians; asymptotic completeness
UR - http://eudml.org/doc/75196
ER -

References

top
  1. [Ag] S. AGMON, Lectures on exponential decay of solutions of second order elliptic equations, Princeton University Press, Princeton, 1982. Zbl0503.35001
  2. [AHS1] J. AVRON, I. HERBST, B. SIMON, Schrödinger operators with magnetic fields I : General interactions, Duke Math. J., 45 (1978), 847-884. Zbl0399.35029MR80k:35054
  3. [AHS2] J. AVRON, I. HERBST, B. SIMON, Schrödinger operators with magnetic fields II : Separation of the center of mass in homogeneous magnetic fields, Ann. Phys., 114 (1978), 431-451. Zbl0409.35027MR80a:81050
  4. [BG] A. BOUTET DE MONVEL, I.V. GEORGESCU, Spectral and scattering theory by the conjugate operator method, Algebra and Analysis, Vol 4 (1992), 73-116. Zbl0791.47010
  5. [BP] A. BOUTET DE MONVEL, R. PURICE, Limiting absorption principle for Schrödinger Hamiltonians with magnetic fields, Comm. in P.D.E., 19 (1994), 89-117. Zbl0798.35132MR95d:81022
  6. [CFKS] H.L. CYCON, R. FROESE, W. KIRSCH, B. SIMON, Schrödinger operators with applications to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics, Springer, 1987. Zbl0619.47005
  7. [Do] J. DOLLARD, Asymptotic convergence and Coulomb interaction, J. Math. Phys., Vol 5 (1964), 729-738. 
  8. [De1] J. DEREZIŃSKI, Asymptotic completeness for N-particle long -range quantum systems, Ann. Math., 138 (1993), 427-476. Zbl0844.47005MR94g:81209
  9. [De2] J. DEREZIŃSKI, The Mourre estimate for dispersive N-body Schrödinger operators, Trans. of AMS, 317 (1990), 773-798. Zbl0691.47004MR90e:81252
  10. [DG] J. DEREZIŃSKI, C. GÉRARD, Asymptotic completeness of N-particle systems, chapter 3, preprint Erwin Schrödinger Institute, 1993. 
  11. [E1] V. ENSS, Asymptotic completeness for quantum-mechanical potential scattering, I. Short-range potentials, Comm. Math. Phys., 61 (1978), 285-291. Zbl0389.47005MR58 #25583
  12. [E2] V. ENSS, Quantum scattering theory for two- and three-body systems with potentials of short and long range, in : Schrödinger Operators, S.Graffi ed., Springer LN Math. 1218, Berlin, 1986. 
  13. [E3] V. ENSS, Quantum scattering with long-range magnetic fields. Operator Theory, Adv. and Appl., 57 (1993), 61-70. Zbl0900.35277MR94j:81274
  14. [FH] R. FROESE, I. HERBST, A new proof of the Mourre estimate, Duke Math. J., 49 (1982), 1075-1085. Zbl0514.35025MR85d:35092
  15. [G] C. GÉRARD, Sharp propagation estimates for N-particle systems, Duke Math. J., 67 (1992), 483-515. Zbl0760.35049MR93j:35061
  16. [GL1] C. GÉRARD, I. LABA, Scattering theory for N-particle systems in constant magnetic fields, Duke Math. J., 76 (1994), 433-465. Zbl0828.35098MR95m:81209
  17. [GL2] C. GÉRARD, I. LABA, Scattering theory for N-particle systems in constant magnetic fields, II. Long-range interactions, Comm. in PDE, 20 (1995), 1791-1830. Zbl0842.35069MR96i:81289
  18. [Gr] G.M. GRAF, Asymptotic completeness for N-body short range quantum systems : A new proof, Comm. in Math. Phys., 132 (1990), 73-101. Zbl0726.35096MR91i:81100
  19. [HeSj] B. HELFFER, J. SJÖSTRAND, Equation de Schrödinger avec champ magnétique et équation de Harper, Springer Lectures Notes in Physics n° 345 (1989), 118-197. Zbl0699.35189
  20. [Hö] L. HÖRMANDER, The analysis of linear partial differential operators, volume III Springer Verlag (1985). Zbl0601.35001
  21. [HuSi] W. HUNZIKER, I.M. SIGAL, The General Theory of N-Body Quantum Systems, in preparation. Zbl0821.35036
  22. [IK] H. ISOZAKI, H. KITADA, Modified wave operators with time-dependent modifiers. J. Fac. Sci. Univ. Tokyo, Sec. 1A, 32 (1985), 77-104. Zbl0582.35036MR86j:35125
  23. [I1] H. IWASHITA, On the long-range scattering for one- and two-particle Schrödinger operators with constant magnetic fields, Preprint, Nagoya Institute of Technology, 1993. 
  24. [I2] H. IWASHITA, Spectral theory for 3-particle quantum systems with constant magnetic fields, Preprint, Nagoya Institute of Technology, 1993. 
  25. [KY] H. KITADA, K. YAJIMA, A scattering theory for time-dependent long-range potentials, Duke Math. J., 49 (1982), 341-376 and 50 (1983), 1005-1016. Zbl0499.35087MR83i:35137
  26. [L1] I. LABA, Long-range one-particle scattering in a homogeneous magnetic field, Duke Math. J., 70 (1993), 283-303. Zbl0809.47007MR94c:47104
  27. [L2] I. LABA, Scattering for hydrogen-like systems in a constant magnetic field, Comm. in P.D.E., 20 (1995), 741-762. Zbl0821.35107MR96c:81229
  28. [LT1] M. LOSS, B. THALLER, Scattering of particles by long-range magnetic fields. Ann. Phys., 176 (1987), 159-180. Zbl0646.35074MR88f:81133
  29. [LT2] M. LOSS, B. THALLER, Short-range scattering in long-range magnetic fields : the relativistic case, J. Diff. Equ., 73 (1988), 225-236. Zbl0664.34035MR90c:81234
  30. [M] Y. MEYER, Ondelettes et Opérateurs II, Hermann Ed., 1990. Zbl0694.41037
  31. [Mo] E. MOURRE, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. in Math. Phys., 78 (1981), 519-567. Zbl0489.47010MR82c:47030
  32. [Ni] F. NICOLEAU, Théorie de la diffusion pour l'opérateur de Schrödinger en présence d'un champ magnétique, Thèse de Doctorat de l'Université de Nantes, 1991. 
  33. [NR] F. NICOLEAU, D. ROBERT, Théorie de la diffusion quantique pour des perturbations à longue et courte portée du champ magnétique, Ann. Fac. Sci. de Toulouse, 12 (1991), 185-194. Zbl0780.35091MR93j:47097
  34. [PSS] P. PERRY, I.M. SIGAL, B. SIMON, Spectral analysis of N-body Schrödinger operators, Ann. Math., 114 (1981), 519-567. Zbl0477.35069MR83b:81129
  35. [RSII] M. REED, B. SIMON, Methods of modern mathematical physics, Vol II, Academic Press. Zbl0401.47001
  36. [SS1] I.M. SIGAL, A. SOFFER, The N-particle scattering problem : asymptotic completeness for short-range quantum systems, Ann. Math., 125 (1987), 35-108. Zbl0646.47009MR88m:81137
  37. [SS2] I.M. SIGAL, A. SOFFER, Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent. Math., 99 (1990), 115-143. Zbl0702.35197MR91e:81114
  38. [SS3] I.M. SIGAL, A. SOFFER, Local decay and velocity bounds, preprint, Princeton University, 1988. 
  39. [SS4] I.M. SIGAL, A. SOFFER, Asymptotic completeness for four-body Coulomb systems, Duke Math. J., 71 (1993), 243-298. Zbl0853.70010MR94i:81141
  40. [SS5] I.M. SIGAL, A. SOFFER, Asymptotic completeness of N particle long range scattering, J. AMS., 7 (1994), 307-334. Zbl0811.35091MR94k:81327
  41. [S] B. SIMON, Phase space analysis of simple scattering systems : extensions of some work of Enss, Duke Math. J., 46 (1979), 119-168. Zbl0402.35076MR80j:35081
  42. [VZ] S.A. VUGALTER, G.M. ZHISLIN, Localization of the essential spectrum of the energy operators of n-particle quantum systems in a magnetic field, Theor. and Math. Phys., 97(1) (1993), 1171-1185. Zbl0801.35096MR95b:81045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.