BMO and Lipschitz approximation by solutions of elliptic equations

Joan Mateu; Yuri Netrusov; Joan Orobitg; Joan Verdera

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 4, page 1057-1081
  • ISSN: 0373-0956

Abstract

top
We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak * spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.

How to cite

top

Mateu, Joan, et al. "BMO and Lipschitz approximation by solutions of elliptic equations." Annales de l'institut Fourier 46.4 (1996): 1057-1081. <http://eudml.org/doc/75199>.

@article{Mateu1996,
abstract = {We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak $*$ spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.},
author = {Mateu, Joan, Netrusov, Yuri, Orobitg, Joan, Verdera, Joan},
journal = {Annales de l'institut Fourier},
keywords = {spectral synthesis; elliptic approximation; Lizorkin-Triebel spaces},
language = {eng},
number = {4},
pages = {1057-1081},
publisher = {Association des Annales de l'Institut Fourier},
title = {BMO and Lipschitz approximation by solutions of elliptic equations},
url = {http://eudml.org/doc/75199},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Mateu, Joan
AU - Netrusov, Yuri
AU - Orobitg, Joan
AU - Verdera, Joan
TI - BMO and Lipschitz approximation by solutions of elliptic equations
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 4
SP - 1057
EP - 1081
AB - We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak $*$ spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.
LA - eng
KW - spectral synthesis; elliptic approximation; Lizorkin-Triebel spaces
UR - http://eudml.org/doc/75199
ER -

References

top
  1. [A] D R. ADAMS, A note on the Choquet integrals with respect to Hausdorff capacity, Lecture Notes in Math., 1302 (1988), 115-124. Zbl0658.31009MR90c:26028
  2. [AH] D.R. ADAMS and L. I. HEDBERG, Function spaces and Potential Theory, Springer, Berlin and Heidelberg, 1996. Zbl0834.46021MR97j:46024
  3. [B] T. BAGBY, Approximation in the mean by solutions of elliptic equations, Trans. Amer. Math. Soc., 281 (1984), 761-784. Zbl0538.35029MR86d:31014
  4. [CA] S. CAMPANATO, Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Sup. Pisa, 18 (1964), 137-160. Zbl0133.06801MR29 #5127
  5. [C] L. CARLESON, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, Van Nostrand, Princeton, N. J., 1967. Zbl0189.10903MR37 #1576
  6. [FJ] M. FRAZIER and B. JAWERTH, A discrete transform and decompositions of distribution spaces, J. Func. Anal., 93 (1990), 34-170. Zbl0716.46031MR92a:46042
  7. [GR] J. GARCÍA-CUERVA and J. L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North-Holland Mathematical Studies, 116, Amsterdam, 1985. Zbl0578.46046MR87d:42023
  8. [GT] P.M. GAUTHIER and N. TARKHANOV, Degenerate cases of approximation by solutions of systems with injective symbols, Canad. J. Math., 20 (1993), 1-18. Zbl0795.35003
  9. [H] L.I. HEDBERG, Two approximation problems in function spaces, Ark. Mat., 16 (1978), 51-81. Zbl0399.46023MR80c:46042
  10. [Ho] P.J. HOLDEN, Extension theorems for functions of vanishing mean oscillation, Pacific J. of Math., 142 (1990), 277-295. Zbl0661.42014MR91c:42027
  11. [JW] A. JONSSON and H. WALLIN, Function spaces on subsets of Rn, Harwood Academic Publishers, Math. Reports, 2, Part 1, 1984. Zbl0875.46003MR87f:46056
  12. [M] J. MATEU, A counterexample in Lp approximation by harmonic functions, preprint, 1995. Zbl0874.41008
  13. [MO] J. MATEU and J. OROBITG, Lipschitz approximation by harmonic functions and some applications to spectral synthesis, Indiana Univ. Math. J., 39 (1990), 703-736. Zbl0768.46006MR92e:46052
  14. [MV] J. MATEU and J. VERDERA, BMO harmonic approximation in the plane and spectral synthesis for Hardy-Sobolev spaces, Rev. Mat. Iberoamericana, 4 (1988), 291-318. Zbl0702.31001MR91e:42033
  15. [MP] P. MATTILA, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Cambridge, 1995. Zbl0819.28004MR96h:28006
  16. [MPO] P. MATTILA and J. OROBITG, On some properties of Hausdorff content related to instability, Ann. Acad. Sci. Fenn. Ser. A I Math., 19 (1994), 393-398. Zbl0805.28004MR95d:28003
  17. [ME] N.G. MEYERS, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc., 15 (1964), 717-721. Zbl0129.04002MR29 #5969
  18. [N1] Y. NETRUSOV, Spectral synthesis in spaces of smooth functions, Russian Acad. Sci. Dokl. Math., 46, 1993), 135-138. Zbl0835.46031MR94c:46068
  19. [N2] Y. NETRUSOV, Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Proc. Steklov Inst. Math., 187 (1990), 185-203. Zbl0719.46018
  20. [N3] Y. NETRUSOV, Imbedding theorems for Lizorkin-Triebel spaces, Zapiski Nauchn. Sem. LOMI, 159 (1987), 103-112, English trans.: J. Soviet Math., 47 (1989). Zbl0686.46027
  21. [N4] Y. NETRUSOV, Metric estimates of capacities of sets in the Besov spaces, Trudy Mian USSR, 190 (1989), 159-185, English trans.: Proc. Steklov Ins. Math., 190 (1992), 167-192. Zbl0789.46025MR91a:46033
  22. [OF1] A.G. O'FARRELL, Rational approximation in Lipschitz norms II, Proc. R. Ir. Acad., 75 A (1975), 317-330. Zbl0324.46026MR53 #6193
  23. [OF2] A.G. O'FARRELL, Hausdorff content and rational approximation in fractional Lipschitz norms, Trans. Amer. Math. Soc., 288 (1977), 187-206. Zbl0355.30029MR55 #5867
  24. [OF3] A.G. O'FARRELL, Localness of certain Banach modules, Indiana Univ. Math. J., 24 (1975), 1135-1141. Zbl0287.46058MR52 #6436
  25. [St] E. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
  26. [TA] N. TARKHANOV, Approximation on compact sets by solutions of systems with surjective symbol, Russian Math. Surveys, 48-5 (1994), 103-145. Zbl0865.46013MR95k:46037
  27. [T] H. TRIEBEL, Theory of function spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. Zbl0546.46027
  28. [V1] J. VERDERA, Cm approximation by solutions of elliptic equations, and Calderón Zygmund operators, Duke Math. J., 55 (1987), 157-187. Zbl0654.35007MR88e:35011
  29. [V2] J. VERDERA, Removability, capacity and approximation, Complex Potential Theory, NATO ASI Series C, 439, Kluwer Academic Publishers, Dordrecht (1993), 419-473. Zbl0809.30001MR96b:30086
  30. [V3] J. VERDERA, BMO rational approximation and one dimensional Hausdorff content, Trans. Amer. Math. Soc., 297 (1986), 283-304. Zbl0642.30029MR88a:30083
  31. [W] B.M. WEINSTOCK, Uniform approximation by solutions of elliptic equations, Proc. Amer. Math. Soc., 41 (1973), 267-290. Zbl0273.35032MR49 #5544

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.