BMO and Lipschitz approximation by solutions of elliptic equations
Joan Mateu; Yuri Netrusov; Joan Orobitg; Joan Verdera
Annales de l'institut Fourier (1996)
- Volume: 46, Issue: 4, page 1057-1081
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMateu, Joan, et al. "BMO and Lipschitz approximation by solutions of elliptic equations." Annales de l'institut Fourier 46.4 (1996): 1057-1081. <http://eudml.org/doc/75199>.
@article{Mateu1996,
abstract = {We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak $*$ spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.},
author = {Mateu, Joan, Netrusov, Yuri, Orobitg, Joan, Verdera, Joan},
journal = {Annales de l'institut Fourier},
keywords = {spectral synthesis; elliptic approximation; Lizorkin-Triebel spaces},
language = {eng},
number = {4},
pages = {1057-1081},
publisher = {Association des Annales de l'Institut Fourier},
title = {BMO and Lipschitz approximation by solutions of elliptic equations},
url = {http://eudml.org/doc/75199},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Mateu, Joan
AU - Netrusov, Yuri
AU - Orobitg, Joan
AU - Verdera, Joan
TI - BMO and Lipschitz approximation by solutions of elliptic equations
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 4
SP - 1057
EP - 1081
AB - We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak $*$ spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.
LA - eng
KW - spectral synthesis; elliptic approximation; Lizorkin-Triebel spaces
UR - http://eudml.org/doc/75199
ER -
References
top- [A] D R. ADAMS, A note on the Choquet integrals with respect to Hausdorff capacity, Lecture Notes in Math., 1302 (1988), 115-124. Zbl0658.31009MR90c:26028
- [AH] D.R. ADAMS and L. I. HEDBERG, Function spaces and Potential Theory, Springer, Berlin and Heidelberg, 1996. Zbl0834.46021MR97j:46024
- [B] T. BAGBY, Approximation in the mean by solutions of elliptic equations, Trans. Amer. Math. Soc., 281 (1984), 761-784. Zbl0538.35029MR86d:31014
- [CA] S. CAMPANATO, Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Sup. Pisa, 18 (1964), 137-160. Zbl0133.06801MR29 #5127
- [C] L. CARLESON, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, Van Nostrand, Princeton, N. J., 1967. Zbl0189.10903MR37 #1576
- [FJ] M. FRAZIER and B. JAWERTH, A discrete transform and decompositions of distribution spaces, J. Func. Anal., 93 (1990), 34-170. Zbl0716.46031MR92a:46042
- [GR] J. GARCÍA-CUERVA and J. L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North-Holland Mathematical Studies, 116, Amsterdam, 1985. Zbl0578.46046MR87d:42023
- [GT] P.M. GAUTHIER and N. TARKHANOV, Degenerate cases of approximation by solutions of systems with injective symbols, Canad. J. Math., 20 (1993), 1-18. Zbl0795.35003
- [H] L.I. HEDBERG, Two approximation problems in function spaces, Ark. Mat., 16 (1978), 51-81. Zbl0399.46023MR80c:46042
- [Ho] P.J. HOLDEN, Extension theorems for functions of vanishing mean oscillation, Pacific J. of Math., 142 (1990), 277-295. Zbl0661.42014MR91c:42027
- [JW] A. JONSSON and H. WALLIN, Function spaces on subsets of Rn, Harwood Academic Publishers, Math. Reports, 2, Part 1, 1984. Zbl0875.46003MR87f:46056
- [M] J. MATEU, A counterexample in Lp approximation by harmonic functions, preprint, 1995. Zbl0874.41008
- [MO] J. MATEU and J. OROBITG, Lipschitz approximation by harmonic functions and some applications to spectral synthesis, Indiana Univ. Math. J., 39 (1990), 703-736. Zbl0768.46006MR92e:46052
- [MV] J. MATEU and J. VERDERA, BMO harmonic approximation in the plane and spectral synthesis for Hardy-Sobolev spaces, Rev. Mat. Iberoamericana, 4 (1988), 291-318. Zbl0702.31001MR91e:42033
- [MP] P. MATTILA, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Cambridge, 1995. Zbl0819.28004MR96h:28006
- [MPO] P. MATTILA and J. OROBITG, On some properties of Hausdorff content related to instability, Ann. Acad. Sci. Fenn. Ser. A I Math., 19 (1994), 393-398. Zbl0805.28004MR95d:28003
- [ME] N.G. MEYERS, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc., 15 (1964), 717-721. Zbl0129.04002MR29 #5969
- [N1] Y. NETRUSOV, Spectral synthesis in spaces of smooth functions, Russian Acad. Sci. Dokl. Math., 46, 1993), 135-138. Zbl0835.46031MR94c:46068
- [N2] Y. NETRUSOV, Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Proc. Steklov Inst. Math., 187 (1990), 185-203. Zbl0719.46018
- [N3] Y. NETRUSOV, Imbedding theorems for Lizorkin-Triebel spaces, Zapiski Nauchn. Sem. LOMI, 159 (1987), 103-112, English trans.: J. Soviet Math., 47 (1989). Zbl0686.46027
- [N4] Y. NETRUSOV, Metric estimates of capacities of sets in the Besov spaces, Trudy Mian USSR, 190 (1989), 159-185, English trans.: Proc. Steklov Ins. Math., 190 (1992), 167-192. Zbl0789.46025MR91a:46033
- [OF1] A.G. O'FARRELL, Rational approximation in Lipschitz norms II, Proc. R. Ir. Acad., 75 A (1975), 317-330. Zbl0324.46026MR53 #6193
- [OF2] A.G. O'FARRELL, Hausdorff content and rational approximation in fractional Lipschitz norms, Trans. Amer. Math. Soc., 288 (1977), 187-206. Zbl0355.30029MR55 #5867
- [OF3] A.G. O'FARRELL, Localness of certain Banach modules, Indiana Univ. Math. J., 24 (1975), 1135-1141. Zbl0287.46058MR52 #6436
- [St] E. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
- [TA] N. TARKHANOV, Approximation on compact sets by solutions of systems with surjective symbol, Russian Math. Surveys, 48-5 (1994), 103-145. Zbl0865.46013MR95k:46037
- [T] H. TRIEBEL, Theory of function spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. Zbl0546.46027
- [V1] J. VERDERA, Cm approximation by solutions of elliptic equations, and Calderón Zygmund operators, Duke Math. J., 55 (1987), 157-187. Zbl0654.35007MR88e:35011
- [V2] J. VERDERA, Removability, capacity and approximation, Complex Potential Theory, NATO ASI Series C, 439, Kluwer Academic Publishers, Dordrecht (1993), 419-473. Zbl0809.30001MR96b:30086
- [V3] J. VERDERA, BMO rational approximation and one dimensional Hausdorff content, Trans. Amer. Math. Soc., 297 (1986), 283-304. Zbl0642.30029MR88a:30083
- [W] B.M. WEINSTOCK, Uniform approximation by solutions of elliptic equations, Proc. Amer. Math. Soc., 41 (1973), 267-290. Zbl0273.35032MR49 #5544
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.