Universal Taylor series

Vassili Nestoridis

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 5, page 1293-1306
  • ISSN: 0373-0956

Abstract

top
We strengthen a result of Chui and Parnes and we prove that the set of universal Taylor series is a G δ -dense subset of the space of holomorphic functions defined in the open unit disc. Our result provides the answer to a question stated by S.K. Pichorides concerning the limit set of Taylor series. Moreover, we study some properties of universal Taylor series and show, in particular, that they are trigonometric series in the sense of D. Menchoff.

How to cite

top

Nestoridis, Vassili. "Universal Taylor series." Annales de l'institut Fourier 46.5 (1996): 1293-1306. <http://eudml.org/doc/75213>.

@article{Nestoridis1996,
abstract = {We strengthen a result of Chui and Parnes and we prove that the set of universal Taylor series is a $G_\delta $-dense subset of the space of holomorphic functions defined in the open unit disc. Our result provides the answer to a question stated by S.K. Pichorides concerning the limit set of Taylor series. Moreover, we study some properties of universal Taylor series and show, in particular, that they are trigonometric series in the sense of D. Menchoff.},
author = {Nestoridis, Vassili},
journal = {Annales de l'institut Fourier},
keywords = {generic property; overconvergence; power series; limit set; rational functions},
language = {eng},
number = {5},
pages = {1293-1306},
publisher = {Association des Annales de l'Institut Fourier},
title = {Universal Taylor series},
url = {http://eudml.org/doc/75213},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Nestoridis, Vassili
TI - Universal Taylor series
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 5
SP - 1293
EP - 1306
AB - We strengthen a result of Chui and Parnes and we prove that the set of universal Taylor series is a $G_\delta $-dense subset of the space of holomorphic functions defined in the open unit disc. Our result provides the answer to a question stated by S.K. Pichorides concerning the limit set of Taylor series. Moreover, we study some properties of universal Taylor series and show, in particular, that they are trigonometric series in the sense of D. Menchoff.
LA - eng
KW - generic property; overconvergence; power series; limit set; rational functions
UR - http://eudml.org/doc/75213
ER -

References

top
  1. [1] N. K. BARY, A Treatise on Trigonometric Series, Vol. I, II, Pergamon Press, 1964. Zbl0129.28002MR30 #1347
  2. [2] C. CHUI, M. N. PARNES, Approximation by overconvergence of power series, Journal of Mathematical Analysis and Applications, 36 (1971), 693-696. Zbl0224.30006MR45 #563
  3. [3] C. CHUI, M. N. PARNES, Limit set of power series outside the circles of convergence, Pacific Journal of Mathematics, 50 (1974), 403-423. Zbl0255.30001MR50 #4915
  4. [4] P. DIENES, The Taylor Series, Dover Pub. Inc., New York, 1957. Zbl0078.05901
  5. [5] J.-P. KAHANE, Sur la structure circulaire des ensembles de points limites des sommes partielles d'une série de Taylor, Acta Sci. Math. (Szeged), 45, n° 1-4 (1983), 247-251. Zbl0528.30004MR85f:30003
  6. [6] E. S. KATSOPRINAKIS, On a theorem of Marcinkiewicz and Zygmund for Taylor series, Arkiv for Matematik, 27, n° 1 (1989) 105-126. Zbl0676.42004MR90i:42014
  7. [7] E. S. KATSOPRINAKIS, V. NESTORIDIS, Partial sums of Taylor series on a circle, Ann. Inst. Fourier, 38-3 (1989), 715-736. Zbl0701.30003MR90k:30004
  8. [8] E. S. KATSOPRINAKIS, Taylor series with limit points on a finite number of circles, Transactions of A.M.S., 337, n° 1 (1993), 437-450. Zbl0774.30006MR93g:30002
  9. [9] E. S. KATSOPRINAKIS, V. NESTORIDIS, An application of Kronecker's Theorem to rational functions, Math. Ann., 298 (1994), 145-166. Zbl0787.30001MR94m:30004
  10. [10] Y. KATZNELSON, An Introduction to Harmonic Analysis, John Wiley & Sons Inc., New York, London, Sydney, Toronto, 1968. Zbl0169.17902MR40 #1734
  11. [11] S. KIERST, E. SZPIRAJN, Sur certaines singularités des fonctions analytiques uniformes, Fundamental Mathematicae, 21 (1933), 267-294. Zbl0008.07401JFM59.0328.02
  12. [12] J. MARCINKIEWICZ, A. ZYGMUND, On the behaviour of triginometric series and power series, Transactions of A.M.S., 50 (1941), 407-453. Zbl0025.40002MR3,105dJFM67.0225.02
  13. [13] D. MENCHOFF, Sur les séries Trigonométriques Universelles, Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, Vol. XLIX, n° 2 (1945), 79-82. Zbl0060.18504MR7,435e
  14. [14] V. NESTORIDIS, Limit points of partial sums of Taylor series, Matematika, 38 (1991), 239-249. Zbl0759.30003MR93f:30004
  15. [15] V. NESTORIDIS, Distribution of partial sums of the Taylor development of rational functions, Transactions of A.M.S., 346, n° 1 (1994), 283-295. Zbl0818.30001MR95i:30003
  16. [16] V. NESTORIDIS, S. K. PICHORIDES, The circular structure of the set of limit points of partial sums of Taylor series, Séminaire d'Analyse Harmonique, Université de Paris-Sud, Mathématiques, Orsay, France (1989-1990), 71-77. Zbl0724.41025MR92h:30005
  17. [17] W. RUDIN, Real and Complex Analysis, McGraw-Hill, New York, 1966. Zbl0142.01701MR35 #1420
  18. [18] A. ZYGMUND, Trigonometric Series, second edition reprinted, Vol. I, II, Cambridge University Press, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.