Partial indices of analytic discs attached to lagrangian submanifolds of N

Josip Globevnik

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 5, page 1307-1326
  • ISSN: 0373-0956

Abstract

top
Integers κ 1 , ... , κ N are the partial indices of an analytic disc attached to a maximally real submanifolds of N if and only if κ j 2 for at least one j . If this is the case there are a Lagrangian submanifold M of N and an analytic disc attached to M with partial indices κ 1 , ... , κ N .

How to cite

top

Globevnik, Josip. "Partial indices of analytic discs attached to lagrangian submanifolds of ${\mathbb {C}}^N$." Annales de l'institut Fourier 46.5 (1996): 1307-1326. <http://eudml.org/doc/75214>.

@article{Globevnik1996,
abstract = {Integers $\kappa _1,\ldots \{\},\kappa _N$ are the partial indices of an analytic disc attached to a maximally real submanifolds of $\{\Bbb C\}^N$ if and only if $\kappa _j\ge 2$ for at least one $j$. If this is the case there are a Lagrangian submanifold $M$ of $\{\Bbb C\}^N$ and an analytic disc attached to $M$ with partial indices $\kappa ^1,\ldots \{\},\kappa ^N$.},
author = {Globevnik, Josip},
journal = {Annales de l'institut Fourier},
keywords = {analytic disc; maximally real submanifold; Lagrangian submanifold},
language = {eng},
number = {5},
pages = {1307-1326},
publisher = {Association des Annales de l'Institut Fourier},
title = {Partial indices of analytic discs attached to lagrangian submanifolds of $\{\mathbb \{C\}\}^N$},
url = {http://eudml.org/doc/75214},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Globevnik, Josip
TI - Partial indices of analytic discs attached to lagrangian submanifolds of ${\mathbb {C}}^N$
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 5
SP - 1307
EP - 1326
AB - Integers $\kappa _1,\ldots {},\kappa _N$ are the partial indices of an analytic disc attached to a maximally real submanifolds of ${\Bbb C}^N$ if and only if $\kappa _j\ge 2$ for at least one $j$. If this is the case there are a Lagrangian submanifold $M$ of ${\Bbb C}^N$ and an analytic disc attached to $M$ with partial indices $\kappa ^1,\ldots {},\kappa ^N$.
LA - eng
KW - analytic disc; maximally real submanifold; Lagrangian submanifold
UR - http://eudml.org/doc/75214
ER -

References

top
  1. [Ch] E. M. CHIRKA, Regularity of boundaries of analytic sets. (Russian) Mat. Sb. (N. S.), 117 (159) (1982), 291-336, English translation in Math. USSR Sb., 45 (1983), 291-335. Zbl0525.32005MR83f:32009
  2. [Č1] M. ČERNE, Minimal discs with free boundaries in a Lagrangian submanifold of ℂn, Indiana Univ. Math. J., 44 (1995), 153-164. Zbl1010.58500MR96f:58035
  3. [Č2] M. ČERNE, Stationary discs of fibrations over the circle, Internat. J. Math., 6 (1995), 805-823. Zbl0841.32007MR96i:32013
  4. [Č3] M. ČERNE, Analytic discs attached to a generating CR-manifold, Arkiv för Mat., 33 (1995), 217-248. Zbl0856.32012MR97d:32008
  5. [Č4] M. ČERNE, Regularity of discs attached to a submanifold of ℂN, preprint Zbl0928.32014
  6. [Fo] F. FORSTNERIČ, Analytic discs with boundaries in a maximal real submanifold of C2, Ann. Inst. Fourier, 37-1 (1987), 1-44. Zbl0583.32038MR88j:32019
  7. [Gl1] J. GLOBEVNIK, Perturbation by analytic discs along maximal real submanifolds of CN, Math. Z., 217 (1994), 287-316. Zbl0806.58044MR95j:32031
  8. [Gl2] J. GLOBEVNIK, Perturbing analytic discs attached to maximal real submanifolds of ℂN, Indag. Math., N. S., 7 (1996), 37-46. Zbl0861.32013MR99b:32023
  9. [O] Y.-G. OH, Riemann-Hilbert problem and application to the perturbation theory of analytic discs, Kyungpook Math. J., 35 (1995), 39-75. Zbl0853.32017MR96j:32013
  10. [P1] J. PLEMELJ, Riemannsche Funktionenscharen mit gegebener Monodromiegruppe, Monatsh. Math. Phys., 19 (1908), 211-246. Zbl39.0461.01JFM39.0461.01
  11. [Po] Ch. POMMERENKE, Boundary behaviour of conformal maps, Grundl. der Math. Wiss., 299, Springer-Verlag, Berlin (1992). Zbl0762.30001MR95b:30008
  12. [PS] A. PRESSLEY and G. SEGAL, Loop groups., Oxford Science Publ., Clarendon Press, Oxford, 1986. Zbl0618.22011MR88i:22049
  13. [Ve1] N. P. VEKUA, Systems of singular integral equations, Nordhoff, Groningen, 1967. 
  14. [Ve2] N. P. VEKUA, Systems of singular integral equations. (2nd edition, Russian) Nauka, Moscow, 1970. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.