Determinant bundle over the universal moduli space of vector bundles over the Teichmüller space

Indranil Biswas

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 3, page 885-914
  • ISSN: 0373-0956

Abstract

top
The moduli space of stable vector bundles over a moving curve is constructed, and on this a generalized Weil-Petersson form is constructed. Using the local Riemann-Roch formula of Bismut-Gillet-Soulé it is shown that the generalized Weil-Petersson form is the curvature of the determinant line bundle, equipped with the Quillen metric, for a vector bundle on the fiber product of the universal moduli space with the universal curve.

How to cite

top

Biswas, Indranil. "Determinant bundle over the universal moduli space of vector bundles over the Teichmüller space." Annales de l'institut Fourier 47.3 (1997): 885-914. <http://eudml.org/doc/75248>.

@article{Biswas1997,
abstract = {The moduli space of stable vector bundles over a moving curve is constructed, and on this a generalized Weil-Petersson form is constructed. Using the local Riemann-Roch formula of Bismut-Gillet-Soulé it is shown that the generalized Weil-Petersson form is the curvature of the determinant line bundle, equipped with the Quillen metric, for a vector bundle on the fiber product of the universal moduli space with the universal curve.},
author = {Biswas, Indranil},
journal = {Annales de l'institut Fourier},
keywords = {moduli space; determinant bundle; Quillen metric},
language = {eng},
number = {3},
pages = {885-914},
publisher = {Association des Annales de l'Institut Fourier},
title = {Determinant bundle over the universal moduli space of vector bundles over the Teichmüller space},
url = {http://eudml.org/doc/75248},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Biswas, Indranil
TI - Determinant bundle over the universal moduli space of vector bundles over the Teichmüller space
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 3
SP - 885
EP - 914
AB - The moduli space of stable vector bundles over a moving curve is constructed, and on this a generalized Weil-Petersson form is constructed. Using the local Riemann-Roch formula of Bismut-Gillet-Soulé it is shown that the generalized Weil-Petersson form is the curvature of the determinant line bundle, equipped with the Quillen metric, for a vector bundle on the fiber product of the universal moduli space with the universal curve.
LA - eng
KW - moduli space; determinant bundle; Quillen metric
UR - http://eudml.org/doc/75248
ER -

References

top
  1. [AB] M.F. ATIYAH, R. BOTT, The Yang-Mills equations over Riemann surfaces, Phil. Tran. Roy. Soc. Lond., A308 (1982), 523-615. Zbl0509.14014MR85k:14006
  2. [BGS1] J.M. BISMUT, H. GILLET, C. Soulé, Analytic torsion and holomorphic determinant bundles I. Bott-Chern forms and analytic torsion, Commun. Math. Phy., 115 (1988), 49-78. Zbl0651.32017MR89g:58192a
  3. [BGS2] J.M. BISMUT, H. GILLET, C. SOULÉ, Analytic torsion and holomorphic determinant bundles II. Direct images and Bott-Chern forms, Commun. Math. Phy., 115 (1988), 79-126. Zbl0651.32017MR89g:58192b
  4. [BGS3] J.M. BISMUT, H. GILLET, C. SOULÉ, Analytic torsion and holomorphic determinant bundles III. Quillen metrices on holomorphic determinants, Commun. Math. Phy., 115 (1988) 301-351. Zbl0651.32017MR89g:58192c
  5. [BR] I. BISWAS, N. RAGHAVENDRA, Determinants of parabolic bundles on Riemann surface, Proc. Indian Acad. Sci., 103 (1993), 41-71. Zbl0779.32021MR94i:58206
  6. [FS] A. FUJIKI, G. SCHUMACHER, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metric, Publ. R.I.M.S. Kyoto Univ., 26 (1990), 101-183. Zbl0714.32007MR92e:32012
  7. [G] W. GOLDMAN, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), 200-225. Zbl0574.32032MR86i:32042
  8. [K] N.M. KATZ, An overview of Deligne's work on Hilbert's twenty-first problem, Proc. Symp. Pure Math., 28 (1976), 537-557. Zbl0347.14010MR55 #5627
  9. [KM] F. KNUDSEN, D. MUMFORD, The projectivity of the moduli space of stable curves I. Preliminaries on "det" and "div", Math. Scand., 39 (1976), 19-55. Zbl0343.14008MR55 #10465
  10. [Ko] S. KOBAYASHI, Differential geometry of complex vector bundles, Publications of the Math. Soc. of Japan, Iwanami Schoten Pub. and Princeton Univ. Press (1987). Zbl0708.53002MR89e:53100
  11. [KT] F. KAMBER, P. TONDEUR, Foliated bundles and characteristic classes, Lec. Notes in Math. 493, Springer-Verlag, Berlin-Heidelberg-New York, (1975). Zbl0308.57011MR53 #6587
  12. [MS] V. MEHTA, C. SESHADRI, Moduli of vector bundles on curves with parabolic structures, Math. Ann., 248 (1980), 205-239. Zbl0454.14006MR81i:14010
  13. [NS] M.S. NARASIMHAN, C. SESHADRI, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math., 82 (1965), 540-567. Zbl0171.04803MR32 #1725
  14. [Q] D. QUILLEN, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. An. Appl., 19 (1985), 31-34. Zbl0603.32016MR86g:32035
  15. [S1] G. SCHUMACHER, Moduli of polarized Kähler manifolds, Math. Ann., 269 (1984), 137-144. Zbl0592.32017MR86g:32038
  16. [ST] G. SCHUMACHER, M. TOMA, Moduli of Kähler manifolds equipped with Hermite-Einstein vector bundles, Rev. Roumaine Math. Pures Appl., 38 (1993), 703-719. Zbl0813.32019MR95f:32025
  17. [ZT] P. ZOGRAF, L. TAKHTADZHYAN, A local index theorem for families of ∂-operators on Riemann surfaces, Russian Math. Surveys, 42-6 (1987), 169-190. Zbl0699.58061MR90b:58254

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.