Schubert varieties, toric varieties and ladder determinantal varieties

Nicolae Gonciulea; Venkatramani Lakshmibai

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 4, page 1013-1064
  • ISSN: 0373-0956

Abstract

top
We construct certain normal toric varieties (associated to finite distributive lattices) which are degenerations of the Grassmannians. We also determine the singular loci for certain normal toric varieties, namely the ones which are certain ladder determinantal varieties. As a consequence, we prove a refined version of the conjecture of Laksmibai & Sandhya [Criterion for smoothness of Schubert varieties in S L ( n ) / B , Proc. Ind. Acad. Sci., 100 (1990), 45-52] on the components of the singular locus, for certain Schubert varieties in the flag variety.

How to cite

top

Gonciulea, Nicolae, and Lakshmibai, Venkatramani. "Schubert varieties, toric varieties and ladder determinantal varieties." Annales de l'institut Fourier 47.4 (1997): 1013-1064. <http://eudml.org/doc/75253>.

@article{Gonciulea1997,
abstract = {We construct certain normal toric varieties (associated to finite distributive lattices) which are degenerations of the Grassmannians. We also determine the singular loci for certain normal toric varieties, namely the ones which are certain ladder determinantal varieties. As a consequence, we prove a refined version of the conjecture of Laksmibai & Sandhya [Criterion for smoothness of Schubert varieties in $SL(n)/B$, Proc. Ind. Acad. Sci., 100 (1990), 45-52] on the components of the singular locus, for certain Schubert varieties in the flag variety.},
author = {Gonciulea, Nicolae, Lakshmibai, Venkatramani},
journal = {Annales de l'institut Fourier},
keywords = {Schubert varieties; toric varieties; ladder determinantal varieties; distributive lattices; singular locus; flag variety},
language = {eng},
number = {4},
pages = {1013-1064},
publisher = {Association des Annales de l'Institut Fourier},
title = {Schubert varieties, toric varieties and ladder determinantal varieties},
url = {http://eudml.org/doc/75253},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Gonciulea, Nicolae
AU - Lakshmibai, Venkatramani
TI - Schubert varieties, toric varieties and ladder determinantal varieties
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 1013
EP - 1064
AB - We construct certain normal toric varieties (associated to finite distributive lattices) which are degenerations of the Grassmannians. We also determine the singular loci for certain normal toric varieties, namely the ones which are certain ladder determinantal varieties. As a consequence, we prove a refined version of the conjecture of Laksmibai & Sandhya [Criterion for smoothness of Schubert varieties in $SL(n)/B$, Proc. Ind. Acad. Sci., 100 (1990), 45-52] on the components of the singular locus, for certain Schubert varieties in the flag variety.
LA - eng
KW - Schubert varieties; toric varieties; ladder determinantal varieties; distributive lattices; singular locus; flag variety
UR - http://eudml.org/doc/75253
ER -

References

top
  1. [1] S.S. ABHYANKAR, Enumerative Combinatorics of Young tableaux, Marcel Decker, 1988. Zbl0643.05001
  2. [2] M. AIGNER, Combinatorial Theory, Springer-Verlag, New York, 1979. Zbl0415.05001MR80h:05002
  3. [3] B.V. BATYREV, I. CIOCAN-FONTANINE, B. KIM and D. van STRATEN, Conifold Transitions and Mirror Symmetry for Calabi-Yau Complete Intersections in Grassmannians, preprint (1997). Zbl0896.14025
  4. [4] A. BJÓRNER, A. GARSIA and R. STANLEY, An introduction to Cohen-Macaulay partially ordered sets, I. Rival (editor), D. Reidel Publishing Company, 1982, 583-615. Zbl0491.06005MR83i:06001
  5. [5] A. BOREL, Linear Algebraic Groups, second edition, Springer-Verlag, New York, 1991. Zbl0726.20030MR92d:20001
  6. [6] N. BOURBAKI, Groups et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968. 
  7. [7] D. COX, J. LITTLE and D. O'SHEA, Ideals, Varieties and Algorithms, Springer-Verlag, New York, 1992. 
  8. [8] D. EISENBUD, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995. Zbl0819.13001
  9. [9] D. EISENBUD and B. STURMFELS, Binomial ideals, preprint (1994). Zbl0873.13021
  10. [10] W. FULTON, Introduction to Toric Varieties, Annals of Math. Studies, 131, Princeton U. P., Princeton N. J., 1993. Zbl0813.14039MR94g:14028
  11. [11] D. GLASSBRENNER and K. E. SMITH, Singularities of certain ladder determinantal varieties, Journal of Pure and Applied Algebra, 100 (1995), 59-75. Zbl0842.13008MR96h:13029
  12. [12] N. GONCIULEA and V. LAKSHMIBAI, Degenerations of flag and Schubert varieties to toric varieties, Transformation Groups, 1 (1996), 215-248. Zbl0909.14028MR98a:14065
  13. [13] N. GONCIULEA and V. LAKSHMIBAI, Singular loci of ladder determinantal varieties and Schubert varieties (preprint, submitted to Journal of Algebra). Zbl1001.14019
  14. [14] R. HARTSHORNE, Algebraic Geometry, Springer-Verlag, New York, 1977. Zbl0367.14001MR57 #3116
  15. [15] T. HIBI, Distributive lattices, affine semigroup rings, and algebras with straightening laws, Commutative Algebra and Combinatorics, Advanced Studies in Pure Math., 11 (1987) 93-109. Zbl0654.13015
  16. [16] H. HILLER, Geometry of Coxeter groups, Pitman Adv. Pub. Prog. Zbl0483.57002
  17. [17] G. KEMPF et al, Toroidal Embeddings, Lecture notes in Mathematics, No. 339, Springer-Verlag, 1973. Zbl0271.14017MR49 #299
  18. [18] G. KEMPF and A. RAMANATHAN, Multicones over Schubert varieties, Inv. Math., 87 (1987), 353-363. Zbl0615.14028MR88c:14067
  19. [19] V. LAKSHMIBAI, C. MUSILI and C. S. SESHADRI, Cohomology of line bundles on G / B, Ann. E.N.S., t. 7 (1974), 89-137. Zbl0338.14017MR50 #7175
  20. [20] V. LAKSHMIBAI and B. SANDHYA, Criterion for smoothness of Schubert varieties in SL(n) / B, Proc. Indian Acad. Sci. (Math. Sci.), 100 (1990), 45-52. Zbl0714.14033MR91c:14061
  21. [21] V. LAKSHMIBAI and J. WEYMAN, Multiplicities of points in a minuscule G / P, Adv. Math., 84 (1990), 179-208. Zbl0729.14037MR92a:14058
  22. [22] S. B. MULAY, Determinantal loci and the flag variety, Adv. Math., 74 (1989), 1-30. Zbl0693.14021MR90j:14071
  23. [23] S. RAMANAN and A. RAMANATHAN, Projective normality of Flag varieties and Schubert varieties, Inv. Math., 79 (1985), 217-224. Zbl0553.14023MR86j:14051
  24. [24] A. RAMANATHAN, Schubert varieties are arithmetically Cohen-Macaulay, Inv. Math., 80 (1985), 283-294. MR87d:14044
  25. [25] A. RAMANATHAN, Equations defining Schubert varieties and Frobenius splitting of diagonals, Pub. Math. I.H.E.S., 65 (1987), 61-90. Zbl0634.14035MR88k:14032
  26. [26] B. STURMFELS, Gröbner bases and convex polytopes, Lecture notes from the New Mexico State University, preprint, 1995. 
  27. [27] D. G. WAGNER, Singularities of toric varieties associated with finite distributive lattices, preprint (1995). Zbl0870.14037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.