Compact quotients of large domains in complex projective space

Finnur Lárusson

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 1, page 223-246
  • ISSN: 0373-0956

Abstract

top
We study compact complex manifolds covered by a domain in n -dimensional projective space whose complement E is non-empty with ( 2 n - 2 ) -dimensional Hausdorff measure zero. Such manifolds only exist for n 3 . They do not belong to the class 𝒞 , so they are neither Kähler nor Moishezon, their Kodaira dimension is - , their fundamental groups are generalized Kleinian groups, and they are rationally chain connected. We also consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for which E is a line, and the generalized Schottky coverings constructed by Nori. We determine their function fields and describe the surfaces they contain.

How to cite

top

Lárusson, Finnur. "Compact quotients of large domains in complex projective space." Annales de l'institut Fourier 48.1 (1998): 223-246. <http://eudml.org/doc/75277>.

@article{Lárusson1998,
abstract = {We study compact complex manifolds covered by a domain in $n$-dimensional projective space whose complement $E$ is non-empty with $(2n-2)$-dimensional Hausdorff measure zero. Such manifolds only exist for $n\ge 3$. They do not belong to the class $\{\cal C\}$, so they are neither Kähler nor Moishezon, their Kodaira dimension is $-\infty $, their fundamental groups are generalized Kleinian groups, and they are rationally chain connected. We also consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for which $E$ is a line, and the generalized Schottky coverings constructed by Nori. We determine their function fields and describe the surfaces they contain.},
author = {Lárusson, Finnur},
journal = {Annales de l'institut Fourier},
keywords = {compact quotients; covering space; Schottky coverings; Blanchard manifolds; Kato manifolds},
language = {eng},
number = {1},
pages = {223-246},
publisher = {Association des Annales de l'Institut Fourier},
title = {Compact quotients of large domains in complex projective space},
url = {http://eudml.org/doc/75277},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Lárusson, Finnur
TI - Compact quotients of large domains in complex projective space
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 223
EP - 246
AB - We study compact complex manifolds covered by a domain in $n$-dimensional projective space whose complement $E$ is non-empty with $(2n-2)$-dimensional Hausdorff measure zero. Such manifolds only exist for $n\ge 3$. They do not belong to the class ${\cal C}$, so they are neither Kähler nor Moishezon, their Kodaira dimension is $-\infty $, their fundamental groups are generalized Kleinian groups, and they are rationally chain connected. We also consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for which $E$ is a line, and the generalized Schottky coverings constructed by Nori. We determine their function fields and describe the surfaces they contain.
LA - eng
KW - compact quotients; covering space; Schottky coverings; Blanchard manifolds; Kato manifolds
UR - http://eudml.org/doc/75277
ER -

References

top
  1. [BPV] W. BARTH, C. PETERS, A. VAN DE VEN, Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag, 1984. Zbl0718.14023MR86c:32026
  2. [Bes] A. L. BESSE, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 10, Springer-Verlag, 1987. Zbl0613.53001
  3. [Bla] A. BLANCHARD, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup., 73 (1956), 157-202. Zbl0073.37503MR19,316e
  4. [BJ] T. BRÖCKER, K. JÄNICH, Introduction to differential topology, Cambridge University Press, 1982. Zbl0486.57001
  5. [Cam1] F. CAMPANA, Coréduction algébrique d'un espace analytique faiblement kählérien compact, Invent. Math., 63 (1981), 187-223. Zbl0436.32024MR84e:32028
  6. [Cam2] F. CAMPANA, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, 122 (1994), 255-284. Zbl0810.32013MR95f:32036
  7. [CP] F. CAMPANA, Th. PETERNELL, Cycle spaces, Several Complex Variables VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, 1994. Zbl0811.32020MR1326625
  8. [FF] G. FISCHER, O. FORSTER, Ein Endlichkeitssatz für Hyperflächen auf kompakten komplexen Räumen, J. reine angew. Math., 306 (1979), 88-93. Zbl0395.32004MR80i:32042
  9. [HP] R. HARVEY, J. POLKING, Extending analytic objects, Comm. Pure Appl. Math., 28 (1975), 701-727. Zbl0323.32013MR53 #13642
  10. [Hit] N. J. HITCHIN, Kählerian twistor spaces, Proc. London Math. Soc., (3) 43 (1981), 133-150. Zbl0474.14024MR84b:32014
  11. [Iva1] S. M. IVASHKOVICH, Extension of locally biholomorphic mappings of domains into complex projective space, Math. USSR Izvestiya, 22 (1984), 181-189. Zbl0561.32007
  12. [Iva2] S. M. IVASHKOVICH, The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math., 109 (1992), 47-54. Zbl0738.32008MR93g:32016
  13. [Kat1] M. KATO, On compact complex 3-folds with lines, Japan. J. Math., 11 (1985), 1-58. Zbl0588.32032MR88c:32041
  14. [Kat2] M. KATO, Factorization of compact complex 3-folds which admit certain projective structures, Tôhoku Math. J., (2) 41 (1989), 359-397. Zbl0686.32016MR91g:32038
  15. [Kat3] M. KATO, A non-Kähler structure on an S2-bundle over a ruled surface (1992), unpublished preprint. 
  16. [Kat4] M. KATO, Compact quotient manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of limit sets, Tokyo J. Math., 19 (1996), 99-119. Zbl0864.57034MR98a:32038
  17. [Kul] R. S. KULKARNI, Some topological aspects of Kleinian groups, Amer. J. Math., 100 (1978), 897-911. Zbl0455.57022MR80j:57044
  18. [Nor] M. V. NORI, The Schottky groups in higher dimensions, Contemporary Mathematics, 58, Part I (1986), 195-197. Zbl0597.32026MR88c:32017
  19. [Sel] A. SELBERG, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function Theory, Tata Institute of Fundamental Research, (1960), 147-164. Zbl0201.36603MR24 #A188
  20. [Shi1] B. SHIFFMAN, On the removal of singularities of analytic sets, Michigan Math. J., 15 (1968) 111-120. Zbl0165.40503MR37 #464
  21. [Shi2] B. SHIFFMAN, Extension of positive line bundles and meromorphic maps, Invent. Math., 15 (1972), 332-347. Zbl0223.32017MR51 #10689
  22. [Sim] R. R. SIMHA, The monodromy representation of projective structures, Arch. Math., 52 (1989), 413-416. Zbl0656.32006MR90g:32010
  23. [Yam] A. YAMADA, Small deformations of certain compact manifolds of class L. II, Tokyo J. Math., 10 (1987), 189-202. Zbl0632.32012MR89d:32046
  24. [Yau] S.-T. YAU, A review of complex differential geometry, Proc. Symp. Pure Math., 52, Part 2 (1991), 619-625. Zbl0739.32001MR92j:32029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.