Compact quotients of large domains in complex projective space
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 1, page 223-246
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLárusson, Finnur. "Compact quotients of large domains in complex projective space." Annales de l'institut Fourier 48.1 (1998): 223-246. <http://eudml.org/doc/75277>.
@article{Lárusson1998,
abstract = {We study compact complex manifolds covered by a domain in $n$-dimensional projective space whose complement $E$ is non-empty with $(2n-2)$-dimensional Hausdorff measure zero. Such manifolds only exist for $n\ge 3$. They do not belong to the class $\{\cal C\}$, so they are neither Kähler nor Moishezon, their Kodaira dimension is $-\infty $, their fundamental groups are generalized Kleinian groups, and they are rationally chain connected. We also consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for which $E$ is a line, and the generalized Schottky coverings constructed by Nori. We determine their function fields and describe the surfaces they contain.},
author = {Lárusson, Finnur},
journal = {Annales de l'institut Fourier},
keywords = {compact quotients; covering space; Schottky coverings; Blanchard manifolds; Kato manifolds},
language = {eng},
number = {1},
pages = {223-246},
publisher = {Association des Annales de l'Institut Fourier},
title = {Compact quotients of large domains in complex projective space},
url = {http://eudml.org/doc/75277},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Lárusson, Finnur
TI - Compact quotients of large domains in complex projective space
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 223
EP - 246
AB - We study compact complex manifolds covered by a domain in $n$-dimensional projective space whose complement $E$ is non-empty with $(2n-2)$-dimensional Hausdorff measure zero. Such manifolds only exist for $n\ge 3$. They do not belong to the class ${\cal C}$, so they are neither Kähler nor Moishezon, their Kodaira dimension is $-\infty $, their fundamental groups are generalized Kleinian groups, and they are rationally chain connected. We also consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for which $E$ is a line, and the generalized Schottky coverings constructed by Nori. We determine their function fields and describe the surfaces they contain.
LA - eng
KW - compact quotients; covering space; Schottky coverings; Blanchard manifolds; Kato manifolds
UR - http://eudml.org/doc/75277
ER -
References
top- [BPV] W. BARTH, C. PETERS, A. VAN DE VEN, Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag, 1984. Zbl0718.14023MR86c:32026
- [Bes] A. L. BESSE, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 10, Springer-Verlag, 1987. Zbl0613.53001
- [Bla] A. BLANCHARD, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup., 73 (1956), 157-202. Zbl0073.37503MR19,316e
- [BJ] T. BRÖCKER, K. JÄNICH, Introduction to differential topology, Cambridge University Press, 1982. Zbl0486.57001
- [Cam1] F. CAMPANA, Coréduction algébrique d'un espace analytique faiblement kählérien compact, Invent. Math., 63 (1981), 187-223. Zbl0436.32024MR84e:32028
- [Cam2] F. CAMPANA, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, 122 (1994), 255-284. Zbl0810.32013MR95f:32036
- [CP] F. CAMPANA, Th. PETERNELL, Cycle spaces, Several Complex Variables VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, 1994. Zbl0811.32020MR1326625
- [FF] G. FISCHER, O. FORSTER, Ein Endlichkeitssatz für Hyperflächen auf kompakten komplexen Räumen, J. reine angew. Math., 306 (1979), 88-93. Zbl0395.32004MR80i:32042
- [HP] R. HARVEY, J. POLKING, Extending analytic objects, Comm. Pure Appl. Math., 28 (1975), 701-727. Zbl0323.32013MR53 #13642
- [Hit] N. J. HITCHIN, Kählerian twistor spaces, Proc. London Math. Soc., (3) 43 (1981), 133-150. Zbl0474.14024MR84b:32014
- [Iva1] S. M. IVASHKOVICH, Extension of locally biholomorphic mappings of domains into complex projective space, Math. USSR Izvestiya, 22 (1984), 181-189. Zbl0561.32007
- [Iva2] S. M. IVASHKOVICH, The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math., 109 (1992), 47-54. Zbl0738.32008MR93g:32016
- [Kat1] M. KATO, On compact complex 3-folds with lines, Japan. J. Math., 11 (1985), 1-58. Zbl0588.32032MR88c:32041
- [Kat2] M. KATO, Factorization of compact complex 3-folds which admit certain projective structures, Tôhoku Math. J., (2) 41 (1989), 359-397. Zbl0686.32016MR91g:32038
- [Kat3] M. KATO, A non-Kähler structure on an S2-bundle over a ruled surface (1992), unpublished preprint.
- [Kat4] M. KATO, Compact quotient manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of limit sets, Tokyo J. Math., 19 (1996), 99-119. Zbl0864.57034MR98a:32038
- [Kul] R. S. KULKARNI, Some topological aspects of Kleinian groups, Amer. J. Math., 100 (1978), 897-911. Zbl0455.57022MR80j:57044
- [Nor] M. V. NORI, The Schottky groups in higher dimensions, Contemporary Mathematics, 58, Part I (1986), 195-197. Zbl0597.32026MR88c:32017
- [Sel] A. SELBERG, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function Theory, Tata Institute of Fundamental Research, (1960), 147-164. Zbl0201.36603MR24 #A188
- [Shi1] B. SHIFFMAN, On the removal of singularities of analytic sets, Michigan Math. J., 15 (1968) 111-120. Zbl0165.40503MR37 #464
- [Shi2] B. SHIFFMAN, Extension of positive line bundles and meromorphic maps, Invent. Math., 15 (1972), 332-347. Zbl0223.32017MR51 #10689
- [Sim] R. R. SIMHA, The monodromy representation of projective structures, Arch. Math., 52 (1989), 413-416. Zbl0656.32006MR90g:32010
- [Yam] A. YAMADA, Small deformations of certain compact manifolds of class L. II, Tokyo J. Math., 10 (1987), 189-202. Zbl0632.32012MR89d:32046
- [Yau] S.-T. YAU, A review of complex differential geometry, Proc. Symp. Pure Math., 52, Part 2 (1991), 619-625. Zbl0739.32001MR92j:32029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.