The complex oriented cohomology of extended powers
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 2, page 517-534
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHunton, John Robert. "The complex oriented cohomology of extended powers." Annales de l'institut Fourier 48.2 (1998): 517-534. <http://eudml.org/doc/75291>.
@article{Hunton1998,
abstract = {We examine the behaviour of a complex oriented cohomology theory $G^*(-)$ on $D_p(X)$, the $C_p$-extended power of a space $X$, seeking a description of $G^*(D_p(X))$ in terms of the cohomology $G^*(X)$. We give descriptions for the particular cases of Morava $K$-theory $K(n)$ for any space $X$ and for complex cobordism $MU$, the Brown-Peterson theories BP and any Landweber exact theory for a wide class of spaces.},
author = {Hunton, John Robert},
journal = {Annales de l'institut Fourier},
keywords = {extended power of a space; complex oriented cohomology; Morava K-theory; Landweber exact cohomology theories; complex cobordism},
language = {eng},
number = {2},
pages = {517-534},
publisher = {Association des Annales de l'Institut Fourier},
title = {The complex oriented cohomology of extended powers},
url = {http://eudml.org/doc/75291},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Hunton, John Robert
TI - The complex oriented cohomology of extended powers
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 517
EP - 534
AB - We examine the behaviour of a complex oriented cohomology theory $G^*(-)$ on $D_p(X)$, the $C_p$-extended power of a space $X$, seeking a description of $G^*(D_p(X))$ in terms of the cohomology $G^*(X)$. We give descriptions for the particular cases of Morava $K$-theory $K(n)$ for any space $X$ and for complex cobordism $MU$, the Brown-Peterson theories BP and any Landweber exact theory for a wide class of spaces.
LA - eng
KW - extended power of a space; complex oriented cohomology; Morava K-theory; Landweber exact cohomology theories; complex cobordism
UR - http://eudml.org/doc/75291
ER -
References
top- [1] A.J. BAKER and J.R. HUNTON, Continuous Morava K-theory and the geometry of the In-adic tower, Math. Scand., 75 (1994), 67-81. Zbl0828.55003MR96a:55009
- [2] A.J. BAKER and U. WÜRGLER, Bockstein operations in Morava K-theories, Forum Math., 3 (1991), 543-560. Zbl0751.55002MR92i:55009
- [3] R. BRUNER, J.P. MAY, J.E. MCCLURE and M. STEINBERGER, H∞ ring spectra and their applications, Springer Lecture Notes in Math., vol. 1176 (1986). Zbl0585.55016MR88e:55001
- [4] A.D. ELMENDORF, I. KRIZ, M.A. MANDELL, J.P. MAY, Modern foundations for stable homotopy theory, Handbook of Algebraic Topology, editor I. M. James, (1995) Elsevier North-Holland. Zbl0865.55007MR97d:55016
- [5] M.J. HOPKINS and J.R. HUNTON, On the structure of spaces representing a Landweber exact cohomology theory, Topology, 34 (1995), 29-36. Zbl0862.55005MR95k:55009
- [6] M. HOVEY, Bousfield Localisation functors and Hopkins' chromatic splitting conjecture, Proceedings of the Čech Centennial Homotopy conference, June 1993, American Mathematical Society Contemporary Mathematics Series, editors Mila Cenkl and Haynes Miller, 181 (1995), 225-250. Zbl0830.55004
- [7] M. HOVEY and H. SADOFSKI, Invertible spectra in the E(n) local stable homotopy category, to appear, Journal of the London Mathematical Society. Zbl0947.55013
- [8] M. HOVEY and N. STRICKLAND, Morava K-theories and localisation, preprint. Zbl0929.55010
- [9] J.R. HUNTON, The Morava K-theory of wreath products, Math. Proc. Camb. Phil. Soc., 107 (1990), 309-318. Zbl0705.55009MR91a:55004
- [10] J.R. HUNTON, Detruncating Morava K-theory, Proc. Adams Memorial Symposium, LMS Lecture notes series, C.U.P., 176 (1992) 35-43. Zbl0751.55003MR94k:55010
- [11] J.R. HUNTON and P.R. TURNER, An exactness theorem for the homology of representing spaces, preprint. Zbl0929.55007
- [12] T. KASHIWABARA, On Brown-Peterson cohomology of QX, preprint. Zbl0985.55006
- [13] P.S. LANDWEBER, Homological properties of comodules over MU*(MU) and BP*(BP), Amer. J. Math., 98 (1976), 591-610. Zbl0355.55007MR54 #11311
- [14] D. LAZARD, Autour de la platitude, Bull. Soc. Math. France, 97 (1969), 81-128. Zbl0174.33301MR40 #7310
- [15] I.J. LEARY, On the integral cohomology of wreath products, to appear, J. Algebra. Zbl0893.55009
- [16] L.G. LEWIS, Jr., J.P. MAY and M. STEINBERGER, Equivariant stable homotopy theory, Springer Lecture Notes in Math., vol. 1213 (1986). Zbl0611.55001MR88e:55002
- [17] J.E. MCCLURE and V.P. SNAITH, On the K-theory of the extended power construction, Math. Proc. Camb. Phil. Soc., 92 (1982), 263-274. Zbl0508.55021MR83j:55004
- [18] J. MILNOR, The Steenrod algebra and its dual, Ann. Math., 67 (1958), 150-171. Zbl0080.38003MR20 #6092
- [19] M. NAKAOKA, Homology of the infinite symmetric group, Ann. Math., 73 (1961), 229-257. Zbl0099.25301MR24 #A1721
- [20] D.C. RAVENEL and W.S. WILSON, The Hopf ring for complex cobordism, Journal of Pure and Applied Algebra, 9 (1977), 241-280. Zbl0373.57020MR56 #6644
- [21] D.C. RAVENEL and W.S. WILSON, The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math., 102 (1980), 691-748. Zbl0466.55007MR81i:55005
- [22] D.C. RAVENEL, W.S. WILSON and N. YAGITA, Brown-Peterson cohomology from Morava K-theory, to appear, Journal of K-theory. Zbl0912.55002
- [23] V.P. SNAITH, A stable decomposition of ΩnΣnX, J. London Math. Soc., 7 (1974), 577-583. Zbl0275.55019MR49 #3918
- [24] D. TAMAKI, Ph. D. thesis, University of Rochester.
- [25] U. WÜRGLER, On products in a family of cohomology theories associated to the invariant prime ideals of π*(BP), Comment. Math. Helv., 52 (1977), 457-481. Zbl0379.55002MR57 #17624
- [26] N. YAGITA, On the Steenrod algebra of Morava K-theory, J. London Math. Soc., (2) 22 (1980), 423-438. Zbl0453.55013MR82f:55027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.