Contact topology and the structure of 5-manifolds with π 1 = 2

Hansjörg Geiges; Charles B. Thomas

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 4, page 1167-1188
  • ISSN: 0373-0956

Abstract

top
We prove a structure theorem for closed, orientable 5-manifolds M with fundamental group π 1 ( M ) = 2 and second Stiefel-Whitney class equal to zero on H 2 ( M ) . This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain 2 -quotients of  S 2 × S 3 .

How to cite

top

Geiges, Hansjörg, and Thomas, Charles B.. "Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$." Annales de l'institut Fourier 48.4 (1998): 1167-1188. <http://eudml.org/doc/75313>.

@article{Geiges1998,
abstract = {We prove a structure theorem for closed, orientable 5-manifolds $M$ with fundamental group $\pi _1(M)=\{\Bbb Z\}_2$ and second Stiefel-Whitney class equal to zero on $H_2(M)$. This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain $\{\Bbb Z\}_2$-quotients of $S^2\times S^3$.},
author = {Geiges, Hansjörg, Thomas, Charles B.},
journal = {Annales de l'institut Fourier},
keywords = {surgery; contact structures; contact surgery; involutions; Brieskorn manifolds; characteristic submanifold; pin cobordism},
language = {eng},
number = {4},
pages = {1167-1188},
publisher = {Association des Annales de l'Institut Fourier},
title = {Contact topology and the structure of 5-manifolds with $\pi _1=\{\mathbb \{Z\}\}_2$},
url = {http://eudml.org/doc/75313},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Geiges, Hansjörg
AU - Thomas, Charles B.
TI - Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1167
EP - 1188
AB - We prove a structure theorem for closed, orientable 5-manifolds $M$ with fundamental group $\pi _1(M)={\Bbb Z}_2$ and second Stiefel-Whitney class equal to zero on $H_2(M)$. This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain ${\Bbb Z}_2$-quotients of $S^2\times S^3$.
LA - eng
KW - surgery; contact structures; contact surgery; involutions; Brieskorn manifolds; characteristic submanifold; pin cobordism
UR - http://eudml.org/doc/75313
ER -

References

top
  1. [1] M.F. ATIYAH and R. BOTT, A Lefschetz fixed point formula for elliptic complexes : II, Applications, Ann. of Math. (2), 88 (1968), 451-491. Zbl0167.21703MR38 #731
  2. [2] K.S. BROWN, Cohomology of Groups, Springer, 1982. Zbl0584.20036MR83k:20002
  3. [3] Y. ELIASHBERG, Topological characterization of Stein manifolds of dimension &gt; 2, Internat. J. Math., 1 (1990), 29-46. Zbl0699.58002MR91k:32012
  4. [4] H. GEIGES, Contact structures on 1-connected 5-manifolds, Mathematika, 38 (1991), 303-311. Zbl0724.57017MR93e:57042
  5. [5] H. GEIGES, Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc., 121 (1997), 455-464. Zbl0882.57007MR98f:53027
  6. [6] H. GEIGES, Applications of contact surgery, Topology, 36 (1997), 1193-1220. Zbl0912.57019MR98d:57044
  7. [7] C.H. GIFFEN, Smooth homotopy projective spaces, Bull. Amer. Math. Soc., 75 (1969), 509-513. Zbl0195.53302MR39 #964
  8. [8] F. HIRZEBRUCH and K.H. MAYER, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer, 1968. Zbl0177.26401MR37 #4825
  9. [9] H. HOPF, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv., 14 (1941/1942), 257-309. Zbl0027.09503MR3,316eJFM68.0503.01
  10. [10] R.C. KIRBY and L.C. SIEBENMANN, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Ann. of Math. Studies, 88, Princeton University Press, 1977. Zbl0361.57004MR58 #31082
  11. [11] R.C. KIRBY and L.R. TAYLOR, Pin structures on low-dimensional manifolds, in : Geometry of Low-Dimensional Manifolds 2, (S.K. Donaldson and C.B. Thomas, eds.), London Math. Soc. Lecture Note Ser., 151, Cambridge University Press (1990), 177-242. Zbl0754.57020MR94b:57031
  12. [12] A.A. KOSINSKI, Differential Manifolds, Academic Press, 1993. Zbl0767.57001MR95b:57001
  13. [13] S. LÓPEZ DE MEDRANO, Involutions on Manifolds, Ergeb. Math. Grenzgeb., 59, Springer, 1971. Zbl0214.22501MR45 #7747
  14. [14] R. LUTZ and C. MECKERT, Structures de contact sur certaines sphères exotiques, C.R. Acad. Sci. Paris, Sér. I, Math., 282 (1976), 591-593. Zbl0326.53044MR53 #1471
  15. [15] J. MARTINET, Formes de contact sur les variétés de dimension 3, in : Proc. Liverpool Singularities Sympos. II (C.T.C. Wall, ed.), Lecture Notes in Math., 209, Springer (1971), 142-163. Zbl0215.23003MR50 #3263
  16. [16] C.P. ROURKE and B.J. SANDERSON, Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb., 69, Springer (1972). Zbl0254.57010MR50 #3236
  17. [17] C.B. THOMAS, Contact structures on (n-1)-connected (2n+1)-manifolds, Banach Center Publ., 18 (1986), 255-270. Zbl0642.57014MR89b:53074
  18. [18] C.T.C. WALL, Surgery of non-simply-connected manifolds, Ann. of Math. (2), 84 (1966), 217-276. Zbl0149.20602MR35 #3692
  19. [19] A. WEINSTEIN, Contact surgery and symplectic handlebodies, Hokkaido Math. J., 20 (1991), 241-251. Zbl0737.57012MR92g:53028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.