Affine plane curves with one place at infinity
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 2, page 375-404
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S.S. ABHYANKAR and T.T. MOH, Embeddings of the line in the plane, J. reine angev. Math., 276 (1975), 148-166. Zbl0332.14004MR52 #407
- [2] S.S. ABHYANKAR and T.T. MOH, On the semigroup of a meromorphic curve, Proc. Int. Symp. Algebraic Geometry, Kyoto (1977), 249-414. Zbl0408.14010
- [3] N.A.' CAMPO and M.OKA, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math., Vol.33, No.4 (1996), 1003-1034. Zbl0904.14014MR98d:14038
- [4] M. FURUSHIMA, Finite groups of polynomial automorphisms in the complex affine plane(I), Mem. Fac. Sci. Kyushu Univ., 36 (1982), 85-105. Zbl0547.32015MR84m:14016
- [5] M. MIYANISHI, Minimization of the embeddings of the curves into the affine plane, J. Kyoto Univ., Vol.36, No.2 (1996), 311-329. Zbl0908.14001MR97j:14015
- [6] J.A. MORROW, Compactifications of C2, Bull. Amer. Math. Soc., 78 (1972), 813-816. Zbl0257.32013MR45 #8875
- [7] Y. NAKAZAWA and M. OKA, Smooth plane curves with one place at infinity, to appear in J. Math. Soc. Japan, Vol.49, No.4 (1997). Zbl0903.14007MR98i:14032
- [8] W.D. NEUMANN, Complex algebraic curves via their links at infinity, Invent. Math., 98 (1989), 445-489. Zbl0734.57011MR91c:57014
- [9] C.P. RAMANUJAM, A topological characterization of the affine plane as an algebraic variety, Ann. Math., (2), 94 (1971), 69-88. Zbl0218.14021MR44 #4010
- [10] A. SATHAYE and J. STENERSON, On plane polynomial curves, Algebraic geometry and its applications, C.L. Bajaj, ed., Springer, (1994), 121-142. Zbl0809.14022MR95a:14032
- [11] M. SUZUKI, Propriété topologique des polynômes de deux variables complexes et automorphismes algébriques de l'espace C2, J. Math. Sci. Japan, 26 (1974), 241-257. Zbl0276.14001MR49 #3188
- [12] ZAIDENBERG and LIN, An irreducible simply connected algebraic curve in ℂ2 is equivalent to a quasihomogeneous curve, Soviet Math. Dokl., Vol.28, No.1 (1983), 200-204. Zbl0564.14014MR85i:14018