Amenable groups and cellular automata
Tullio G. Ceccherini-Silberstein; Antonio Machi; Fabio Scarabotti
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 2, page 673-685
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCeccherini-Silberstein, Tullio G., Machi, Antonio, and Scarabotti, Fabio. "Amenable groups and cellular automata." Annales de l'institut Fourier 49.2 (1999): 673-685. <http://eudml.org/doc/75350>.
@article{Ceccherini1999,
abstract = {We show that the theorems of Moore and Myhill hold for cellular automata whose universes are Cayley graphs of amenable finitely generated groups. This extends the analogous result of A. Machi and F. Mignosi “Garden of Eden configurations for cellular automata on Cayley graphs of groups” for groups of sub-exponential growth.},
author = {Ceccherini-Silberstein, Tullio G., Machi, Antonio, Scarabotti, Fabio},
journal = {Annales de l'institut Fourier},
keywords = {amenable groups; Cayley graph; cellular automaton; garden of Eden},
language = {eng},
number = {2},
pages = {673-685},
publisher = {Association des Annales de l'Institut Fourier},
title = {Amenable groups and cellular automata},
url = {http://eudml.org/doc/75350},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Ceccherini-Silberstein, Tullio G.
AU - Machi, Antonio
AU - Scarabotti, Fabio
TI - Amenable groups and cellular automata
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 673
EP - 685
AB - We show that the theorems of Moore and Myhill hold for cellular automata whose universes are Cayley graphs of amenable finitely generated groups. This extends the analogous result of A. Machi and F. Mignosi “Garden of Eden configurations for cellular automata on Cayley graphs of groups” for groups of sub-exponential growth.
LA - eng
KW - amenable groups; Cayley graph; cellular automaton; garden of Eden
UR - http://eudml.org/doc/75350
ER -
References
top- [A] S.I. ADYAN, Random walks on free periodic groups, Math. USSR Izvestiya, 21-3 (1983) 425-434. Zbl0528.60011
- [ACP] S. AMOROSO, G. COOPER and Y. PATT, Some clarifications of the concept of Garden of Eden configuration, J. Comput. Sci., 10 (1975), 77-82. Zbl0348.94056MR51 #5203
- [BCG] E.R. BERLEKAMP, J.H. CONWAY and R.K. GUY, Winning Ways for your mathematical plays, vol 2, Chapter 25, Academic Press, 1982. Zbl0485.00025
- [CG] T.G. CECCHERINI-SILBERSTEIN and R.I. GRIGORCHUK, Amenability and growth of one-relator groups, Enseign. Math., 43 (1997), 337-354. Zbl0897.20022MR99b:20057
- [CGH] T. CECCHERINI-SILBERSTEIN, R. GRIGORCHUK and P. de la HARPE, Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces, Proc. Steklov Math. Inst., to appear. Zbl0968.43002
- [F] H. FURSTENBERG, private communication.
- [G] R.I. GRIGORCHUK, Degrees of growth of finitely generated groups and the theory of invariant means, Math USSR Izvestiya, 25 (1985), 259-300. Zbl0583.20023
- [Gr] F.P. GREENLEAF, Invariant Means on Topological Groups, New York: van Nostrand, 1969. Zbl0174.19001MR40 #4776
- [Gro] M. GROMOV, Endomorphisms of symbolic algebraic varieties, preprint IHES/M/98/56, 1998. Zbl0998.14001
- [MaMi] A. MACHÌ and F. MIGNOSI, Garden of Eden configurations for cellular automata on Cayley graphs of groups, SIAM J. Disc. Math., 6 (1993), 44-56. Zbl0768.68103MR95a:68084
- [Mo] E.F. MOORE, Machine models of self-reproduction, in Essays on Cellular Automata, Arthur B. Burks ed., University of Illinois Press, Urbana, Chicago, London, 1970. Zbl0233.94026
- [My] J. MYHILL, The converse of Moore's Garden of Eden Theorem, Proc. Amer. Math. Soc., 14 (1963), 685-686. Zbl0126.32501MR27 #5698
- [vN1] J. von NEUMANN, The Theory of Self-Reproducing Automata, A. Burks ed., University of Illinois Press, Urbana, IL 1966.
- [vN2] J. von NEUMANN, Zur allgemeinen Theorie des Masses, Fund. Math., 13 (1930), 73-116. Zbl55.0151.01JFM55.0151.01
- [O] A. Yu OL'SHANSKI, On the question of the existence of an invariant mean on a group. (Russian) Uspekhi Mat. Nauk, 35 (1980), n° 4 (214), 199-200. Zbl0452.20032MR82b:43002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.