On the null space of a Colin de Verdière matrix

Lászlo Lovász; Alexander Schrijver

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 3, page 1017-1026
  • ISSN: 0373-0956

Abstract

top
Let G = ( V , E ) be a 3-connected planar graph, with V = { 1 , ... , n } . Let M = ( m i , j ) be a symmetric n × n matrix with exactly one negative eigenvalue (of multiplicity 1), such that for i , j with i j , if i and j are adjacent then m i , j < 0 and if i and j are nonadjacent then m i , j = 0 , and such that M has rank n - 3 . Then the null space ker M of M gives an embedding of G in S 2 as follows: let { a , b , c } be a basis of ker M , and for i V let ϕ ( i ) : = ( a i , b i , c i ) T ; then ϕ ( i ) 0 , and ψ ( i ) : = ϕ ( i ) / ϕ ( i ) embeds V in S 2 such that connecting, for any two adjacent vertices i , j , the points ψ ( i ) and ψ ( j ) by a shortest geodesic on S 2 , gives a proper embedding of G in S 2 .We prove similar results for outerplanar graphs and paths. They apply to the matrices associated with the parameter μ ( G ) introduced by Y. Colin de Verdière.

How to cite

top

Lovász, Lászlo, and Schrijver, Alexander. "On the null space of a Colin de Verdière matrix." Annales de l'institut Fourier 49.3 (1999): 1017-1026. <http://eudml.org/doc/75353>.

@article{Lovász1999,
abstract = {Let $G=(V,E)$ be a 3-connected planar graph, with $V=\lbrace 1,\ldots ,n\rbrace $. Let $M=(m_\{i,j\})$ be a symmetric $n\times n$ matrix with exactly one negative eigenvalue (of multiplicity 1), such that for $i,j$ with $i\ne j$, if $i$ and $j$ are adjacent then $m_\{i,j\}&lt; 0$ and if $i$ and $j$ are nonadjacent then $m_\{i,j\}=0$, and such that $M$ has rank $n-3$. Then the null space $\ker M$ of $M$ gives an embedding of $G$ in $S^2$ as follows: let $\lbrace a,b,c\rbrace $ be a basis of $\ker M$, and for $i\in V$ let $\phi (i):=(a_i,b_i,c_i)^T$; then $\phi (i)\ne 0$, and $\psi (i):=\phi (i)/\Vert \phi (i)\Vert $ embeds $V$ in $S^2$ such that connecting, for any two adjacent vertices $i,j$, the points $\psi (i)$ and $\psi (j)$ by a shortest geodesic on $S^2$, gives a proper embedding of $G$ in $S^2$.We prove similar results for outerplanar graphs and paths. They apply to the matrices associated with the parameter $\mu (G)$ introduced by Y. Colin de Verdière.},
author = {Lovász, Lászlo, Schrijver, Alexander},
journal = {Annales de l'institut Fourier},
keywords = {Colin de Verdière matrix; planar graph; outerplanar graph; null space; imbedding; matrix},
language = {eng},
number = {3},
pages = {1017-1026},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the null space of a Colin de Verdière matrix},
url = {http://eudml.org/doc/75353},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Lovász, Lászlo
AU - Schrijver, Alexander
TI - On the null space of a Colin de Verdière matrix
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 1017
EP - 1026
AB - Let $G=(V,E)$ be a 3-connected planar graph, with $V=\lbrace 1,\ldots ,n\rbrace $. Let $M=(m_{i,j})$ be a symmetric $n\times n$ matrix with exactly one negative eigenvalue (of multiplicity 1), such that for $i,j$ with $i\ne j$, if $i$ and $j$ are adjacent then $m_{i,j}&lt; 0$ and if $i$ and $j$ are nonadjacent then $m_{i,j}=0$, and such that $M$ has rank $n-3$. Then the null space $\ker M$ of $M$ gives an embedding of $G$ in $S^2$ as follows: let $\lbrace a,b,c\rbrace $ be a basis of $\ker M$, and for $i\in V$ let $\phi (i):=(a_i,b_i,c_i)^T$; then $\phi (i)\ne 0$, and $\psi (i):=\phi (i)/\Vert \phi (i)\Vert $ embeds $V$ in $S^2$ such that connecting, for any two adjacent vertices $i,j$, the points $\psi (i)$ and $\psi (j)$ by a shortest geodesic on $S^2$, gives a proper embedding of $G$ in $S^2$.We prove similar results for outerplanar graphs and paths. They apply to the matrices associated with the parameter $\mu (G)$ introduced by Y. Colin de Verdière.
LA - eng
KW - Colin de Verdière matrix; planar graph; outerplanar graph; null space; imbedding; matrix
UR - http://eudml.org/doc/75353
ER -

References

top
  1. [1] Y. COLIN DE VERDIÈRE, Sur un nouvel invariant des graphes et un critère de planarité, Journal of Combinatorial Theory, Series B, 50 (1990), 11-21 [English translation: On a new graph invariant and a criterion for planarity, in: Graph Structure Theory (N. Robertson, P. Seymour, eds.), Contemporary Mathematics, American Mathematical Society, Providence, Rhode Island, 1993, 137-147]. Zbl0742.05061MR91m:05068
  2. [2] H. VAN DER HOLST, A short proof of the planarity characterization of Colin de Verdière, Journal of Combinatorial Theory, Series B, 65 (1995), 269-272. Zbl0841.05025MR96g:05050
  3. [3] H. VAN DER HOLST, Topological and Spectral Graph Characterizations, Ph.D. Thesis, University of Amsterdam, 1996. 
  4. [4] H. VAN DER HOLST, L. LOVÁSZ, A. SCHRIJVER, On the invariance of Colin de Verdière's graph parameter under clique sums, Linear Algebra and its Applications, 226 (1995), 509-517. Zbl0834.05036MR97e:05113
  5. [5] L. LOVÁSZ, A. SCHRIJVER, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proceedings of the American Mathematical Society, 126 (1998), 1275-1285. Zbl0886.05055MR98j:05059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.