On the null space of a Colin de Verdière matrix
Lászlo Lovász; Alexander Schrijver
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 3, page 1017-1026
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLovász, Lászlo, and Schrijver, Alexander. "On the null space of a Colin de Verdière matrix." Annales de l'institut Fourier 49.3 (1999): 1017-1026. <http://eudml.org/doc/75353>.
@article{Lovász1999,
abstract = {Let $G=(V,E)$ be a 3-connected planar graph, with $V=\lbrace 1,\ldots ,n\rbrace $. Let $M=(m_\{i,j\})$ be a symmetric $n\times n$ matrix with exactly one negative eigenvalue (of multiplicity 1), such that for $i,j$ with $i\ne j$, if $i$ and $j$ are adjacent then $m_\{i,j\}< 0$ and if $i$ and $j$ are nonadjacent then $m_\{i,j\}=0$, and such that $M$ has rank $n-3$. Then the null space $\ker M$ of $M$ gives an embedding of $G$ in $S^2$ as follows: let $\lbrace a,b,c\rbrace $ be a basis of $\ker M$, and for $i\in V$ let $\phi (i):=(a_i,b_i,c_i)^T$; then $\phi (i)\ne 0$, and $\psi (i):=\phi (i)/\Vert \phi (i)\Vert $ embeds $V$ in $S^2$ such that connecting, for any two adjacent vertices $i,j$, the points $\psi (i)$ and $\psi (j)$ by a shortest geodesic on $S^2$, gives a proper embedding of $G$ in $S^2$.We prove similar results for outerplanar graphs and paths. They apply to the matrices associated with the parameter $\mu (G)$ introduced by Y. Colin de Verdière.},
author = {Lovász, Lászlo, Schrijver, Alexander},
journal = {Annales de l'institut Fourier},
keywords = {Colin de Verdière matrix; planar graph; outerplanar graph; null space; imbedding; matrix},
language = {eng},
number = {3},
pages = {1017-1026},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the null space of a Colin de Verdière matrix},
url = {http://eudml.org/doc/75353},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Lovász, Lászlo
AU - Schrijver, Alexander
TI - On the null space of a Colin de Verdière matrix
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 1017
EP - 1026
AB - Let $G=(V,E)$ be a 3-connected planar graph, with $V=\lbrace 1,\ldots ,n\rbrace $. Let $M=(m_{i,j})$ be a symmetric $n\times n$ matrix with exactly one negative eigenvalue (of multiplicity 1), such that for $i,j$ with $i\ne j$, if $i$ and $j$ are adjacent then $m_{i,j}< 0$ and if $i$ and $j$ are nonadjacent then $m_{i,j}=0$, and such that $M$ has rank $n-3$. Then the null space $\ker M$ of $M$ gives an embedding of $G$ in $S^2$ as follows: let $\lbrace a,b,c\rbrace $ be a basis of $\ker M$, and for $i\in V$ let $\phi (i):=(a_i,b_i,c_i)^T$; then $\phi (i)\ne 0$, and $\psi (i):=\phi (i)/\Vert \phi (i)\Vert $ embeds $V$ in $S^2$ such that connecting, for any two adjacent vertices $i,j$, the points $\psi (i)$ and $\psi (j)$ by a shortest geodesic on $S^2$, gives a proper embedding of $G$ in $S^2$.We prove similar results for outerplanar graphs and paths. They apply to the matrices associated with the parameter $\mu (G)$ introduced by Y. Colin de Verdière.
LA - eng
KW - Colin de Verdière matrix; planar graph; outerplanar graph; null space; imbedding; matrix
UR - http://eudml.org/doc/75353
ER -
References
top- [1] Y. COLIN DE VERDIÈRE, Sur un nouvel invariant des graphes et un critère de planarité, Journal of Combinatorial Theory, Series B, 50 (1990), 11-21 [English translation: On a new graph invariant and a criterion for planarity, in: Graph Structure Theory (N. Robertson, P. Seymour, eds.), Contemporary Mathematics, American Mathematical Society, Providence, Rhode Island, 1993, 137-147]. Zbl0742.05061MR91m:05068
- [2] H. VAN DER HOLST, A short proof of the planarity characterization of Colin de Verdière, Journal of Combinatorial Theory, Series B, 65 (1995), 269-272. Zbl0841.05025MR96g:05050
- [3] H. VAN DER HOLST, Topological and Spectral Graph Characterizations, Ph.D. Thesis, University of Amsterdam, 1996.
- [4] H. VAN DER HOLST, L. LOVÁSZ, A. SCHRIJVER, On the invariance of Colin de Verdière's graph parameter under clique sums, Linear Algebra and its Applications, 226 (1995), 509-517. Zbl0834.05036MR97e:05113
- [5] L. LOVÁSZ, A. SCHRIJVER, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proceedings of the American Mathematical Society, 126 (1998), 1275-1285. Zbl0886.05055MR98j:05059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.