Bicubic planar maps

William T. Tutte

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 3, page 1095-1102
  • ISSN: 0373-0956

Abstract

top
A numerical function of bicubic planar maps found by the author and colleagues is a special case of a polynomial due to François Jaeger.

How to cite

top

Tutte, William T.. "Bicubic planar maps." Annales de l'institut Fourier 49.3 (1999): 1095-1102. <http://eudml.org/doc/75358>.

@article{Tutte1999,
abstract = {A numerical function of bicubic planar maps found by the author and colleagues is a special case of a polynomial due to François Jaeger.},
author = {Tutte, William T.},
journal = {Annales de l'institut Fourier},
keywords = {polynomial; alternating map; bicubic planar map; imbedding},
language = {eng},
number = {3},
pages = {1095-1102},
publisher = {Association des Annales de l'Institut Fourier},
title = {Bicubic planar maps},
url = {http://eudml.org/doc/75358},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Tutte, William T.
TI - Bicubic planar maps
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 1095
EP - 1102
AB - A numerical function of bicubic planar maps found by the author and colleagues is a special case of a polynomial due to François Jaeger.
LA - eng
KW - polynomial; alternating map; bicubic planar map; imbedding
UR - http://eudml.org/doc/75358
ER -

References

top
  1. [1] R.L. BROOKS, C.A.B. SMITH, A.H. STONE and W.T. TUTTE, The dissection of rectangles into squares, Duke Math. J., 7 (1940), 312-340. Zbl0024.16501MR2,153dJFM66.0181.01
  2. [2] R.L. BROOKS, C.A.B. SMITH, A.H. STONE and W.T. TUTTE, Leaky electricity and triangulated triangles, Philips Research Reports, 30 (1975), 205-219. 
  3. [3] F. JAEGER, A new invariant of plane bipartite cubic graphs, Discrete Maths., 101 (1992), 149-164. Zbl0767.05043MR94e:05090
  4. [4] N. ROBERTSON, D. SANDERS, P. SEYMOUR and R. THOMAS, The four colour Theorem, J. Comb. Theory B, 70 (1997), 2-44. Zbl0883.05056MR98c:05065
  5. [5] P.G. TAIT, Note on a theorem in geometry of position, Trans. Royal Soc. Edinburgh, 29 (1880), 657-660. Zbl12.0409.01JFM12.0409.01
  6. [6] W.T. TUTTE, On Hamiltonian Circuits, J. London Math. Soc., 21 (1946), 98-101. Zbl0061.41306MR8,397d
  7. [7] W.T. TUTTE, The dissection of equilateral triangles into equilateral triangles, Proc. Cambbridge Phil. Soc., 44 (1948), 463-482. Zbl0030.40903MR10,319c
  8. [8] W.T. TUTTE, On chromatic polynomials and the golden ratio, J. Comb. Theory, 9 (1970), 289-296. Zbl0209.55001MR42 #7557
  9. [9] W.T. TUTTE, Graph theory as I have known it, Chapter 4, Oxford University Press, 1998. Zbl0915.05041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.