Bipartite graphs that are not circle graphs
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 3, page 809-814
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBouchet, André. "Bipartite graphs that are not circle graphs." Annales de l'institut Fourier 49.3 (1999): 809-814. <http://eudml.org/doc/75364>.
@article{Bouchet1999,
abstract = {The following result is proved: if a bipartite graph is not a circle graph, then its complement is not a circle graph. The proof uses Naji’s characterization of circle graphs by means of a linear system of equations with unknowns in $\{\rm GF\}(2)$.At the end of this short note I briefly recall the work of François Jaeger on circle graphs.},
author = {Bouchet, André},
journal = {Annales de l'institut Fourier},
keywords = {circle graph; binary matroid},
language = {eng},
number = {3},
pages = {809-814},
publisher = {Association des Annales de l'Institut Fourier},
title = {Bipartite graphs that are not circle graphs},
url = {http://eudml.org/doc/75364},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Bouchet, André
TI - Bipartite graphs that are not circle graphs
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 809
EP - 814
AB - The following result is proved: if a bipartite graph is not a circle graph, then its complement is not a circle graph. The proof uses Naji’s characterization of circle graphs by means of a linear system of equations with unknowns in ${\rm GF}(2)$.At the end of this short note I briefly recall the work of François Jaeger on circle graphs.
LA - eng
KW - circle graph; binary matroid
UR - http://eudml.org/doc/75364
ER -
References
top- [1] A. BOUCHET, Graphic presentations of isotropic systems, J. Combin. Theory, Ser. B, 45 (1988), 58-76. Zbl0662.05014MR89f:05150
- [2] A. BOUCHET, A characterization of unimodular orientations of simple graphs, J. Combin. Theory, Ser. B, 56 (1992), 45-54. Zbl0709.05023MR93i:05092
- [3] A. BOUCHET, Circle graph obstructions, J. Combin. Theory, Ser. B, 60 (1994), 107-144. Zbl0793.05116MR95d:05039
- [4] H. de FRAYSSEIX, A characterization of circle graphs, Europ. J. Combin., 5 (1984), 223-238. Zbl0551.05056MR86c:05096
- [5] E. GASSE, A short proof of a circle graph characterization, Discrete Math., 173 (1997), 277-283. Zbl0882.05111MR98g:05125
- [6] F. JAEGER, Graphes de cordes et espaces graphiques, Europ. J. Combin., 4 (1983), 319-327. Zbl0542.05055MR85e:05155
- [7] F. JAEGER, On some algebraic properties of graphs, in Progress in Graph Theory (Waterloo, Ont. 1982), Academic Press, Toronto, Ont., 1984, 347-366. Zbl0557.05034MR86d:05074
- [8] F. JAEGER, Graphic description of binary spaces, in Matroid Theory (Szeged, 1982), vol. 40 of Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam (1985), 215-231. Zbl0646.05067MR87g:05205
- [9] W. NAJI, Reconnaissance des graphes de cordes, Discrete Math., 54 (1985), 329-337. Zbl0567.05033MR87b:05113
- [10] K. TRUEMPER, Matroid Decomposition, Academic Press, 1992. Zbl0760.05001MR93h:05046
- [11] W. T. TUTTE, Lectures on matroids, J. Res. Nat. Bur. Standards, Sect. B, 69b (1965), 1-47. Zbl0151.33801MR31 #4023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.